

How to cite this document:

Heroux, A. M., Allen, G. (2016, September). Computational Science and Engineering Software

Sustainability and Productivity (CSESSP) Challenges Workshop Report. Arlington, VA:

Networking and Information Technology Research and Development (NITRD) Program.

Retrieved from NITRD Website: https://www.nitrd.gov/PUBS/CSESSPWorkshopReport.pdf

https://www.nitrd.gov/PUBS/CSESSPWorkshopReport.pdf

Productive and Sustainable

Computational Science & Engineering Software

Productivity and Sustainability (CSESSP) Challenges

Workshop Report

Sponsored by
Networking and Information Technology Research and Development (NITRD) Program

with

U.S. Department of Energy,

U.S. National Science Foundation,

U.S. Department of Defense OSD OASD

October 15–16, 2015

Washington, DC USA

CSESSP Workshop Report Group
Michael A. Heroux (co-chair, Sandia National Laboratories)

Gabrielle Allen (co-chair, University of Illinois Urbana-Champaign)

NITRD Point of Contact
Ernie Lucier

Abstract

This report details the challenges and opportunities discussed at the NITRD sponsored
multi-agency workshop on Computational Science and Engineering Software Productivity
and Sustainability (CSESSP) Challenges, held in Washington, D.C. USA on October 15–16,
2015. The workshop brought together 85 attendees from all branches of the U.S. federal
government, industry, academia, and U.S. and international research laboratories to dis­
cuss growing concerns over the sustainability of our Computational Science and Engineering
(CSE) software foundation, and the productivity of scientists and engineers who develop
and use this software. Discussions focused on characterization of the challenges, and oppor­
tunities for improved productivity and sustainability going forward. This report comprises
workshop and subsequent discussions including a summary of key opportunities for the CSE
community going forward.

Networking and Information Technology Research and Development (NITRD)
Program
The Networking and Information Technology Research and Development (NITRD) Program
is the Nation’s primary source of federally funded work on advanced information technologies
(IT) in computing, networking, and software. The Program is one of the oldest and largest
of the formal Federal programs that engage multiple agencies in coordination activities. As
required by the High-Performance Computing Act of 1991 (P.L. 102-194), the Next Genera­
tion Internet Research Act of 1998 (P.L. 105-305), and the America COMPETES (Creating
Opportunities to Meaningfully Promote Excellence in Technology, Education, and Science)
Act of 2007 (P.L. 110-69), the NITRD Program provides a framework and mechanisms for
coordination among the Federal agencies that support advanced IT R&D and annually re­
port IT research budgets in the NITRD crosscut of the President’s Budget. Many other
agencies with IT interests also participate in NITRD activities. Overall NITRD Program
coordination is carried out by the Subcommittee on Networking and Information Technol­
ogy Research and Development, under the aegis of the Committee on Technology (CoT) of
the National Science and Technology Council (NSTC). The NITRD National Coordination
Office (NITRD/NCO) provides technical, administrative, and logistical support for the ac­
tivities of the NITRD Program. For further information about the NITRD Program, please
see the NITRD website: www.nitrd.gov.

Software Productivity, Sustainability, and Quality (SPSQ) (Formerly SDP CG)
SPSQ is a NITRD Interagency Working Group (IWG) that coordinates R&D that spans
both the science and the technology of software creation and sustainment (e.g., development
methods and environments, verification and validation technologies, component technologies,
languages, and tools) and software project management in diverse domains. The primary
SPSQ IWG ob jective is to accelerate progress in the science and technology of software pro­
duction to deliver orders of magnitude improvement in software defect rates and in the time
and cost of creating and sustaining software to drive innovation to the strategic advantage
of the United States and develop the next-generation software-intensive systems.

Copyright Information
This is a work of the U.S. Government and is in the public domain and may be freely
distributed, copied, and translated; acknowledgment of publication by the National Coor­
dination Office for Networking and Information Technology Research and Development is
appreciated. Any translation should include a disclaimer that the accuracy of the translation
is the responsibility of the translator and not the NITRD/NCO. It is requested that a copy
of any translation be sent to the NITRD/NCO.

Publication of This Report
Electronic versions of NITRD documents are available at NITRD website: https://www.
nitrd.gov.

Auspices Statement
This work has been supported by the National Science Foundation Award CCF - 1551592,
managed by the University of Illinois Urbana-Champaign; by the Department of Energy,
Office of Advanced Scientific Computing Research; and the Networking and Information
Technology Research and Development Program.

https://www.nitrd.gov
https://www.nitrd.gov
http:www.nitrd.gov

Contents

Table of Contents . i

Preface . iv

Executive Summary . v

Acknowledgments . vii

Contributors . viii

1	 Introduction 1

1.1 Dematerialization through digitization . 1

1.2 Challenges, trends, and opportunities . 1

1.3 Characterizing productivity and sustainability 2

1.4 Software productivity . 3

1.5 Software sustainability . 4

1.6 The shared productivity-sustainability concern for product quality 5

2	 Improved CSE Software Sustainability and Developer Productivity: Op­
portunities and Incentives 5

2.1 Opportunities . 5

2.2 The CREATE Pro ject: Emphasizing sustainability and productivity 8

2.3 Providing incentives: Funding agencies, publishers and employers 9

3 Role of Software Engineering Research	 10

3.1 Expanding software engineering practice . 12

3.2 New software engineering research . 13

3.3 Transition of research to practice in CSE software community 13

3.4 Collaboration opportunities . 14

3.5 Specific needs of small user teams . 15

3.6 Software engineering research roadmap . 15

3.7 Productive and sustainable: Astrophysics community codes 16

4	 Measuring Software Productivity and Sustainability 17

4.1	 Opportunities for investigation . 18

4.2	 Understanding the use of and experience with metrics in the software engi­

neering (SWE) community . 19

4.3	 Exposing the current use and experience with metrics in the CSE community 20

4.4	 CSE as a distinct software domain . 20

4.5	 Encouraging and increasing introspection into CSE software development . . 21

4.6	 Measuring productivity and sustainability roadmap 22

5	 New Approaches for Faster, More Affordable CSE Software 22

5.1 Suggested research directions . 23

5.1.1	 Productivity through continued knowledge development, capture, and

dissemination . 24

5.1.2	 Productivity through design capture, display, and revision 25

5.1.3	 Productivity through design recovery and modernization 26

Productivity and Sustainability Challenges for CSE Software i

5.2 New approaches roadmap . 27

6 Economics of CSE Software Tools	 29

6.1 Descriptive examples . 30

6.1.1 Addressing the current cultural economics of CSE tool development . 30

6.1.2 Establishing new academia-industry-government partnership models . 31

6.1.3 Economics of commercial software . 32

6.1.4 Shared public-private journey . 34

6.1.5 Identifying new incentives for retaining top software talent 34

6.2 An urgent need for productive and sustainable tools 35

6.3 Software tools roadmap . 35

7 Social Sciences Applied to CSE Software Systems	 36

7.1 CSE software is an ecosystem . 38

7.2 CSE software development is a set of social communities 39

7.2.1 Team dynamics and culture . 39

7.2.2 Individual and intra-team social skills 39

7.2.3 Individual response to community culture 40

7.2.4 Inter-team communities and practices 40

7.2.5 The role of tools . 41

7.3 Social sciences roadmap . 41

7.4 Possible outcomes . 42

8 Workforce Needs for Sustainable Software for Sciences	 43

8.1 Scale and scope of problem . 44

8.2 Gaps in current training processes . 45

8.3 Innovative and emerging solutions . 46

8.4 Role of universities, industry and funding agencies roadmap 46

9 CSE Software in Industry & Manufacturing	 47

9.1 Opportunities for CSE software to advance industry & manufacturing 48

9.1.1 Financial impact . 48

9.1.2 Engines of productivity . 48

9.1.3 Instruments for insight . 50

9.1.4 Software ecosystem synergy . 50

9.1.5 Software scalability competitiveness 50

9.1.6 A new paradigm for regulation . 51

9.1.7 Grand challenge: Scalable multiscale 52

9.1.8 Stimulate workforce development . 52

9.2	 Development and use challenges of CSE modeling & simulation (M&S) soft­
ware by industry . 53

9.2.1 Software licensing terms . 53

9.3 CSE impact: Consumer products . 54

10 Summary and Conclusions	 55

Productivity and Sustainability Challenges for CSE Software ii

56 References

Appendices 67

White Papers . 67

Workshop Participants . 68

Workshop Agenda . 72

Productivity and Sustainability Challenges for CSE Software iii

Preface

The Computational Science & Engineering Software Sustainability and Productivity (CSESSP)
Challenges workshop identified the unique issues around software productivity and sustain-
ability faced by the NITRD computational science and engineering (CSE) communities by
bringing together experts from academia, industry, government, and national laboratories.
The CSESSP provided the international software engineering research community with a
unique opportunity to develop, discuss, refine, and disseminate consequential new ideas
about future investments in software sustainability and productivity research. The com­
mittee defined eight ma jor discussion themes based on 39 position papers. This report
summarizes the results of these discussions.

Productivity and Sustainability Challenges for CSE Software iv

Executive Summary

This document contains a report from the Computational Science and Engineering Software
Sustainability and Productivity (CSESSP) Challenges Workshop, held October 15–16, 2015
in Rockville, MD and sponsored by the Networking and Information Technology Research
and Development (NITRD) Program, the US Department of Energy (DOE), the US Depart­
ment of Defense (DOD) and the US National Science Foundation (NSF). Content comes from
meeting discussions and subsequent exchanges between workshop participants. Highlights
are summarized in this executive summary.

Computational Science and Engineering (CSE) is transforming scientific dis­
covery and engineering design: Computational Science and Engineering (CSE)—using
computer modeling & simulation of mathematical models applied to important problems
in science and engineering—is firmly established as a legitimate discipline alongside theory,
experimentation and (increasingly) data science for advancing human knowledge, under­
standing and technology by “substituting atoms with electrons.” CSE plays a unique and
indispensable role in our society today, growing in importance and impact with time.

The CSE software ecosystem and
enterprise need transformation. At the
same time, CSE software as the foundation
for modeling & simulation activities is in ur­
gent need of transformation. In order for us
to take advantage of qualitative advances in
software engineering in other domains, and
maximize the impact of CSE, our software
base will require significant investment in
both modified and new code, and in the pro­
cesses by which it is produced and sustained.
A timely and significant investment in CSE
software productivity and sustainability will
have a magnified impact on science and en­
gineering overall.

CSE software productivity and sus­
tainability improvements require fun­
damental research and development,
metrics and new approaches. Software
productivity and sustainability have improved dramatically in mainstream domains where
user and developer communities are large and well funded. Many books, articles and com­
munity leaders in these domains have enabled steady quality improvements. While CSE
software efforts can clearly benefit from this body of knowledge, our communities and prob­
lems are sufficiently different so as to often require stripping mainstream approaches to their
essence and reconstructing them to meet our needs. Furthermore, our communities can con­
tribute fundamental improvements to the overall body of knowledge since our efforts often
push the limits of what software products can and must do. To make improvements we need
some ability to measure productivity and sustainability changes, and define new approaches
that result in measurable progress.

CSE software as an enterprise has
yet to emerge as a creative disci-
pline in its own right. Both model
complexity and hardware complex-
ity are growing simultaneously, and
they both make the other more dif-
ficult to manage. The time is upon
us to address the growing challenge
of software productivity, quality,
and sustainability that imperils the
whole endeavor of computation-
enabled science and engineering.

Productivity and Sustainability Challenges for CSE Software v

Focusing on CSE Software productivity and sustainability improvements can
help address critical staffing shortages. Hardware, software and problem complexities
are dramatically reducing the number of scientists and engineers who can effectively use
CSE environments to address grand challenge problems. New models are needed to spur
development of productive and sustainable tools that expand access to and usability of
CSE capabilities. Improving CSE software developer productivity, and product usability,
accessibility and sustainability will have a multiplicative impact on staffing challenges by
enabling the use of CSE by more scientists and engineers, and increasing the productivity of
each person. Therefore, even if staffing shortages continue we can experience the equivalent
of increasing the number of skilled scientists and engineers who can use CSE.

CSE software efforts rely on communities and ecosystems. CSE software de­
velopment is a social activity; the entire process from eliciting requirements to producing,
integrating and sustaining a software product is typically a team activity involving dozens of
people with diverse skills. Understanding and influencing group dynamics is key to improving
software teams. Furthermore, CSE software productivity and sustainability improvements
can be enhanced by fostering professional networks, and recognizing software contributions.

Education in CSE software productivity and sustainability is needed both as
an academic discipline and a professional development service. The CSE software
community is primarily composed of domain experts who understand the intended use of a
CSE software product, but who are not as well prepared to design and develop the product.
Traditionally, formal software education and training have had only limited attention from
CSE community members. Presently it is becoming clearer that we need more attention
paid to CSE software productivity and sustainability, both as an academic discipline and
as a collection of accessible content delivered in creative ways to CSE software professionals
who want to learn about the latest ideas in software efforts.

CSE software productivity and sustainability efforts need to address the re­
search to production software transformation. CSE software has a tremendous impact
on industry & manufacturing. Even so, leveraging research and laboratory CSE software in
the industrial environment is extremely challenging. Many effective CSE software products
never make it into the hands of the scientists and engineers who could benefit the most from
their use, and could themselves provide innovative new uses to solve important problems.
CSE software often starts as a small effort in a research environment, growing organically as
a craft more than an engineering discipline. If we can effectively manage the research to pro­
duction growth process we will dramatically increase the number of effective CSE products
available to the broader industrial and manufacturing communities.

Any investment in CSE software productivity and sustainability will have a
disproportionate positive impact on all of science and engineering. Science and
engineering will benefit substantially by increasing the productivity and sustainability of
CSE efforts. CSE has emerged as such an important element in the overall scientific and
engineering endeavor that any substantial improvements in the quality of our software efforts
will have multiple and large impacts on any endeavor where CSE plays a role.

Productivity and Sustainability Challenges for CSE Software vi

Acknowledgments

There were many contributors to the process that lead to the composition of this report,
and the CSESSP Challenges Workshop Report Group would like to express our gratitude to
these individuals.

A large part of our information-gathering process was the workshop held in Washington,
D.C. We would like to thank the workshop steering committee:

•	 Vivien Bonazzi, National Institutes of Health (NIH)/OD
•	 Steven Drager, Air Force Research Laboratory (AFRL)
•	 Sol Greenspan, National Science Foundation (NSF)
•	 Daniel S. Katz, National Science Foundation (NSF)
•	 Walid Keyrouz, National Institute of Standards and Technology (NIST)
•	 Dai Hyun Kim, Office of the Secretary of Defense (OSD)
•	 James Kirby, Naval Research Laboratory (NRL)
• T. Ndousse-Fetter, Office of Science, U.S. Department of Energy

and the Workshop Program Committee:

•	 Gabrielle Allen, University of Illinois Urbana-Champaign (co-chair)
•	 Michael A. Heroux, Sandia National Laboratories (co-chair)
•	 Jeff Carver, University of Alabama
•	 Tom Clune, National Aeronautics and Space Administration (NASA)
•	 Merle Giles, University of Illinois Urbana-Champaign
•	 Lois Curfman McInnes, Argonne National Laboratory
•	 Manish Parashar, Rutgers University
•	 Doug Post, Department of Defense (DOD)
•	 Roldan Pozo, National Institute of Standards and Technology (NIST)
•	 Ethan Coon, Los Alamos National Lab

and the staff at Oak Ridge Institute for Science and Education (ORISE) (Deneise Terry

and Jody Crisp, in particular) and University of Illinois (Laura Owen) for their help with

managing the logistics of the workshop.

Particular thanks are due to the breakout session chairs who led discussions at the workshop:

•	 Jack Dongarra, Jeffrey Vetter: Opportunities from Improved CSE SW Sustainability and
Productivity

•	 Richard Arthur, CSE Software in Industry/Manufacturing
•	 Ray Idaszak, Economics of Software Tools
•	 Daniel S. Katz, Aleksandra Pawlik, Social Sciences Applied to CSE Software Systems
•	 Abani Patra, Workforce Development
•	 Anshu Dubey, Role of Software Engineering Research
•	 Lois Curfman McInnes, Measuring Software Productivity and Performance
•	 Sandy Landsberg, New Approaches for Faster, More Affordable CSE Software

We would finally like to thank the authors who submitted white papers as well as the
workshop participants.

Productivity and Sustainability Challenges for CSE Software vii

List of contributors

Lead Editors

• Michael A. Heroux (Sandia National Laboratories)
• Gabrielle Allen (University of Illinois Urbana-Champaign)

Sections1

• Opportunities from Improved CSE Software Sustainability and Productivity
Lead: Jack Dongarra (University of Tennessee, Knoxville)

Contributors: Michael A. Heroux (Sandia National Laboratories), Albert I. Reuther

(MIT Lincoln Laboratory), Grady Campbell (domain-specific.com)

• Role of Software Engineering Research
Lead: Anshu Dubey (Argonne National Laboratory)
Contributors: Michael A. Heroux (Sandia National Laboratories), Daniel Ibanez (Rens­
selaer Polytechnic Institute), Grady Campbell (domain-specific.com), Vijay Mahadevan
(Argonne National Laboratory), Ethan Coon (Los Alamos National Laboratory), Karl
Rupp (TUW)

• Measuring Software Productivity and Performance
Lead: David E. Bernholdt (ORNL)

Contributors: Roscoe Bartlett (ORNL → SNL), Daniel S. Katz (NSF → University of

Illinois Urbana-Champaign), Albert I. Reuther (MIT Lincoln Laboratory)

• New Approaches for Faster, More Affordable CSE Software
Lead: Thomas Clune (NASA Global Modeling and Assimilation Office)

Contributors: Albert I. Reuther (MIT Lincoln Laboratory), Grady Campbell (domain­
specific.com)

• Economics of Software Tools
Lead: Ray Idaszak (RENCI, University of North Carolina at Chapel Hill)
Contributors: Richard Arthur (General Electric), Roscoe Bartlett (ORNL → SNL), Ira
Baxter (Semantic Designs), David E. Bernholdt (Oak Ridge National Laboratory), Ronald
Boisvert (NIST), Karamarie Fecho (Copperline Professional Solutions), Rob Fowler (RENCI,
University of North Carolina at Chapel Hill), Sol Greenspan (NSF), Michael A. Heroux
(Sandia National Laboratories), Costin Iancu (Lawrence Berkeley National Laboratory),
Christos Kartsaklis (Oak Ridge National Laboratory), Daniel S. Katz (NSF → Univer­
sity of Illinois Urbana-Champaign), Quincey Koziol (The HDF Group), Sandy Landsberg
(DoD HPC Modernization Program [HPCMP]), Ernie Lucier (NITRD), John McGregor
(Clemson University), Thomas Ndousse-Fetter (DOE), Aleksandra Pawlik (Software Sus­
tainability Institute → New Zealand eScience Infrastructure [NeSI]), Albert I. Reuther
(MIT Lincoln Laboratory), Walter Scarborough (TACC, University of Texas), and Will
Schroeder (Kitware, Inc.).

• Social Sciences Applied to CSE Software Systems
Leads: Daniel S. Katz (NSF → University of Illinois Urbana-Champaign), Aleksandra

1“→” is used to indicate a change of affiliation of a contributor between the workshop and the completion
of this report.

Productivity and Sustainability Challenges for CSE Software viii

http:specific.com
http:domain-specific.com
http:domain-specific.com

Pawlik (Software Sustainability Institute → New Zealand eScience Infrastructure [NeSI])
Contributors: Gabrielle Allen (University of Illinois Urbana-Champaign), William Bar­
ley (University of Illinois Urbana-Champaign), Ethan Coon (LANL), Kevin G. Crowston
(Syracuse), Kosta Damevski (Virginia Commonwealth University), Mike Glass (Sandia),
Timo Heister (Clemson), James Herbsleb (Carnegie Mellon), James Howison (U Texas),
Ray Idaszak (RENCI), Paul Jones (FDA), David Lesmes (DOE/BER), Robert Nagler
(RadiaSoft LLC), David Tarboton (Utah State University)

•	 Workforce Development
Lead: Abani Patra (University at Buffalo)
Contributors: Michael A. Heroux (Sandia National Laboratories), Daniel S. Katz (NSF
→ University of Illinois Urbana-Champaign)

•	 CSE Software in Industry and Manufacturing
Lead: Richard Arthur (General Electric)
Contributors: Joerg Gablonsky (The Boeing Company), Tom Lange (Procter & Gamble-
Retired), Todd Simons (Rolls-Royce), Hai Zhu (DuPont)

Productivity and Sustainability Challenges for CSE Software ix

Productivity and Sustainability Challenges for CSE Software x

1 Introduction

Computational science and engineering (CSE) is an essential and growing component of every
technical field today. Advances in CSE provide competitive advantages: reducing costs and
labor, shortening development cycles, reducing or eliminating experiments, and providing
information for situations where theory and data are not sufficient, and experimentation is
not possible.

1.1 Dematerialization through digitization

Over the past 20 years, CSE has transformed
economics, science and engineering by pro­
gressively “substituting atoms with elec­
trons” in the words of some futurists [93, 98].
We are poised to continue and accelerate
this trend leveraging capabilities such as bet­
ter planning, improved process yields, pre­
cision logistics and efficiencies in local cus­
tom manufacturing to reduce historic waste
of materials (including those supplying en­
ergy). One can observe the concept of
“dematerialization” in the macroeconomic
reduction or leveling off of environmental
and natural resource impact despite growth in populations and gross domestic products
(GDPs) [8].

CSE has transformed economics,
science and engineering by pro-
gressively “substituting atoms with
electrons.” We can sustain this
progress by further improving soft-
ware productivity, usability, capa-
bility and sustainability.

Within this broad market effect, CSE software enables the substitution of physical meth­
ods with computational models for experimentation, prototyping, and trial and error through
ever-greater fidelity and confidence in simulated physics, chemistry, biology, engineering, and
more. This reduced impact on the planet benefits industry not only in public favor for being
responsible citizens, but also in direct reduction in the costs associated with obtaining, pro­
cessing, shipping, and ultimately disposing of physical materials. CSE software also plays a
critical role in national defense, for example eliminating the need for nuclear testing, and in
discovering fundamental properties of physics and the universe, such as the nature of black
holes [76]. We can sustain this progress by further improving software productivity, usability,
capability and sustainability, as well as availability of validation data to drive confidence in
broader adoption of digital methods [39].

1.2 Challenges, trends, and opportunities

While CSE capabilities offer tremendous value to society, the current broad collection of CSE
software faces fundamental challenges (see for example [39]). Our software base is large and
expensive to maintain. New capabilities are developed by science and engineering experts
who often lack sufficient training in software engineering. Furthermore, while the broader
software engineering community can clearly inform CSE software efforts, the rules of thumb
and body of experience often have to be recalibrated for effective use in CSE software efforts.

Productivity and Sustainability Challenges for CSE Software 1

Furthermore, the usefulness of CSE soft­
ware tools often depends on efficient exe­
cution, and trends in computer design now
require effective use of concurrency in or­
der to realize performance improvements on
new computing platforms. Introducing con­
currency capabilities into CSE applications
forces fundamental changes in data models

Timely, significant software pro­
ductivity and sustainability invest­
ments will have a magnified impact
on overall scientific and engineering
productivity.

and any dependent functionality. In many
CSE software codes this means a complete
refactoring, or even a replacement, of existing code.

In addition to challenges from hardware changes, the success of CSE leads to a desire for
higher fidelity models that are more accurate, include more diverse physics, and scale and
assimilate more data, leading to a larger and more complex software eco-system with even
more complex organizational demands [108]. This success has also spurred a desire to make
CSE software tools more accessible, so that more segments of society can benefit from their
use, meaning we want simpler ways to use a CSE software base that is growing in complexity.

1.3 Characterizing productivity and sustainability

The emergence of CSE software as a central and indispensable element of the research and
development (R&D) enterprise implies that software infrastructure must be integrated into
the core processes of science and engineering. Solid foundations of algorithms, software,
computing system hardware, data and software repositories, and coupled infrastructure are
the building blocks of CSE. While the desire to support the new “exploration of newly
discovered phenomena, development of new theories and capabilities, and research into new
ideas” is certainly essential, often the race to achieve the next result takes precedence over
sustaining the infrastructure upon which most success rests. The result has been duplicated
effort, fragile code bases, long ramp-up for new users and other costs that, when considered
over a longer span of time, reduce overall progress.

CSE software is developed and maintained by a disparate group of universities, national
laboratories, hardware vendors, and small, independent companies. Few of these groups have
the human resources to support and sustain the software tools and infrastructure that enable
CSE or to develop transforming technologies. Instead, academic and national laboratory
researchers depend on an unpredictable stream of research grants and contracts, few of which
contain explicit support for software development and maintenance for the many years that
these software pro jects will be used.

The open source model reflects the rise of collaborative projects that require the free
exchange of software components as part of a shared infrastructure. Unlike hardware which
becomes obsolete within a decade, the life of CSE software has consistently spanned two, of­
ten three, decades. Many national and international projects are predicated on the existence
of a shared base of reusable and extensible software that can couple scientific instruments,
data archives, distributed collaborators, and scientific codes, while also enabling research in
software tools, techniques, and algorithms. In this shared, open source model, development
is collaborative, with contributions from a diverse set of developers who are supported by

Productivity and Sustainability Challenges for CSE Software 2

an equally diverse set of mechanisms.
The successful evolution and maintenance of such complex software systems depends

on institutional memory: the continuous involvement of key developers who understand
the software’s design and participate in its support and development for multiple years.
Unfortunately, such stability and continuity are rare. Research ideas can be explored by
faculty and laboratory researchers with a small cadre of graduate students, but building and
sustaining robust software requires experienced professionals and long-term commitments to
hardening, porting, and enhancing that software infrastructure most valued by the research
community.

Developing and supporting robust, user-friendly CSE software is expensive and intellec­
tually challenging. Effective development requires many mundane activities not normally
associated with academic research: software porting and testing, developing and testing in­
tuitive user interfaces, and writing manuals and documentation. Thus one desirable concept
is that of a software sustainability center that could work with academic researchers, appli­
cation scientists, and vendors to evaluate, test, and extend community software. To ensure
unbiased selection of those component technologies to be supported by the centers, indepen­
dent oversight bodies could be appointed, ideally with membership drawn from academia,
national laboratories, and industry.

Whatever model of support is used, its implementation should ensure that a stable orga­
nization, with a lifetime of decades, can maintain and evolve the software. At the same time,
the government should not duplicate successful commercial software packages, but instead
invest in new technology that does not yet exist. All too often, academic software tools
fail to leverage commercial software capabilities and best practices. When new commer­
cial providers emerge, the government should purchase their products, and redirect its own
efforts toward technology that it cannot otherwise obtain.

The barriers to replacement of today’s low-level application programming interfaces are
also high, due to the large investments in application software. Significantly enhancing our
ability to program very large systems will require radical, coordinated changes to many tech­
nologies. To make these changes, the government needs long-term, coordinated investments
in a large number of interlocking technologies.

1.4 Software productivity

Scientific productivity can be considered an overall measure of quality of the complete process
of achieving scientific results (Figure 1). Scientific productivity includes software productiv­
ity described in this section, along with execution-time productivity (efficiency, time, and
cost for running scientific workloads), workflow and analysis productivity (effort, time, and
cost for the overall cycle of simulation and analysis), and the value of computational output
in terms of scientific exploration and discovery (more accurate physics, improved fidelity,
coupled scales, etc.).

Software productivity expresses the effort, time, and cost of developing, deploying, and
maintaining a product having needed software capabilities in a targeted scientific computing
environment. Productivity has three primary elements: feasibility (the ability to build,
integrate, and deploy a needed software product within given time and resource constraints),
sustainability (the ability to maintain, configure, port, and evolve a software product as

Productivity and Sustainability Challenges for CSE Software 3

needs and technology change), and verifiability (the ability to evaluate whether a software
product satisfies specified criteria). A fourth element, reusability (encompassing modularity
and adaptability), concerns the development of software capabilities that are anticipated to
be usable in multiple similar and evolving products comprising a product family. Software
productivity is further affected by two other concerns: product value (the anticipated utility
and quality of the envisioned product) and acquirer acuity (the degree of insight and foresight
as to what capabilities users need now and in the future).

1.5 Software sustainability

Software sustainability is
the ability to maintain
the scientifically-useful ca­
pability of a software
product over its intended
life span, i.e., “preserve
the function of a sys­
tem over a defined times-
pan” [74]. Whereas the
overall concern of produc­
tivity is the (iterative)
derivation of usable soft­
ware capabilities, sustain-
ability focuses more nar­
rowly on the retention
and evolution of those
capabilities as scientific
needs and enabling tech­
nology change. Sustain-
ability encompasses the
ability to understand and
modify a software prod­
uct’s behavior to reflect
new and changing needs
and technology. This
includes maintaining the

Figure 1: Scientific (and more generally CSE) productivity can be repre­
sented as a cycle of activities [39]. Software productivity is one component
of overall CSE productivity. Because of the significant challenges our CSE
software efforts face in adapting to new computing systems and meeting
ever-increasing fidelity demands, investments in software sustainability and
productivity will have a magnified impact on overall productivity. Further­
more, given the numerous advances in mainstream software engineering, the
CSE community has a unique opportunity to dramatically improve the way
we produce and sustain software.

software’s scientific integrity consistent with underlying scientific concepts and computa­
tional assumptions. It also includes converting the software so as to operate correctly in
differing computational environments.

Sustainability in particular concerns a variety of issues related to ensuring that software
continues to meet its users’ needs, including that it is affordable and maintainable over
many decades, that it can be easily refactored and extended to respond to new programming
models, hardware changes, or feature needs, and that it satisfies needs for reproducibility
and verification.

Productivity and Sustainability Challenges for CSE Software 4

1.6	 The shared productivity-sustainability concern for product
quality

While productivity concerns the ability to create needed software capabilities using chosen
technology and sustainability concerns the ability to maintain those capabilities as needs and
technology evolve, there is a shared concern for attainment and retention of product quality.
Software quality encompasses deterministic functionality (the ability to perform its intended
function, including predictability, interoperability, and reproducibility), performance (the
ability to process its workload within available resource constraints, including utilization
and throughput), dependability (the ability to operate effectively, including reliability, data
integrity, and security), and usability (the ability to be used effectively and efficiently by
users including accessibility and explainability). Quality is achieved through the use of an
effective and efficient software development process that results in a software product that
supports scientific productivity.

2	 Improved CSE Software Sustainability and Devel­

oper Productivity: Opportunities and Incentives

From space science to ge­
nomics, disaster planning to
cybersecurity, designing new
materials to modeling the ori­
gins of the Universe, exploit­
ing big data to designing en­
ergy efficient aircraft, the rate
and extent of progress in aca­
demic and industrial research
and development depends on
the availability of scalable and
optimized software which is
also reliable, trustable, usable

Opportunities from CSE software advances:

• Rapidly prototype, deploy and test new ideas
• Algorithms and software for V&V of complex SW
• Reliable code with reproducibility constraints
• Performance portability on modern architectures
• High level productive domain-specific abstractions
• Improved workforce development and education
• Interoperable quality reusable software components
• Industry, academic and lab interactions around SW
• Usable software for beginners through better tools

and accessible. The impact of
good software is tremendous,
providing the potential to shorten the design cycle between physical modeling and explo­
ration to real CSE solutions, contributing to economic development, national security and
scientific understanding. Good software enables the solution of more difficult problems, with
less effort, more quickly (both in time to initially run the code and making the code complete
runs faster). Also it would allow modifying and changing the code very rapidly based on
solution feedback.

2.1	 Opportunities

This report discusses and characterizes the challenges and opportunities for programmer
productivity and software sustainability from several perspectives. Here we summarize the

Productivity and Sustainability Challenges for CSE Software 5

key opportunities we believe could most benefit the CSE community.

•	 Explore how the CSE high performance computing (HPC) workflow could be
revised to improve productivity. Software activities are currently a prominent aspect
of the notional HPC workflow (e.g., Figure 2). These activities distract from the scientific
endeavor itself, being concerned with primarily technical aspects of providing software
capabilities needed in that endeavor. A more streamlined workflow could be envisioned
that would reduce software-related bottlenecks. For example, abstraction and automation
are key to improving productivity by reducing the dependence on multidisciplinary experts:

–	 Providing computational abstractions to reflect the science and math of the problem do­
main would reduce the program complexity, improve understandability and ease main­
tainability and verification

–	 Providing hardware-independent abstractions would make it possible to express algo­
rithmic parallelization for optimization and tuning for performance and automating
mapping to hardware for data layout, latency, etc.

Figure 2: A canonical HPC workflow (Stuart Faulk). Software activities are currently a
prominent aspect of the notional HPC workflow. These activities distract from the scientific
endeavor itself, being concerned with primarily technical aspects of providing software ca­
pabilities needed in that endeavor. A more streamlined workflow could be envisioned that
would reduce software-related bottlenecks.

Productivity and Sustainability Challenges for CSE Software 6

•	 Explore how the CSE HPC experimental environment could be improved with
more advanced software capabilities. Improvements could come from better inte­
gration of tools with interfaces tailored to the terminology, experimental methods, and
sub ject matter of a scientific discipline. Instrumented domain-specific environments (see
for example the breakout session discussed in section 2.2) could enable more effective man­
agement and performance of experiments and the use of community-sanctioned sharing of
configurable models of physical processes.

•	 Explore how CSE software practices could be revised to improve software
productivity-sustainability and quality. The software engineering discipline entails
an investment of effort that provides a long-term payoff in terms of the software being
better understood, being more easily evolved, and being a higher quality product. Such
discipline involves practices such as documenting assumptions and rationale for maintain­
ability, engineering to accommodate both current and potential future needs for evolvabil­
ity, techniques for verifiability of models of physical processes, configurability to differing
needs and computational technology (e.g., scaling), and improved techniques for all aspects
of product quality (functionality, performance, dependability, usability).

•	 Provide coordinated focus on advanced research in methods and algorithms
for the community. The challenges presented by exascale computing to scientific com­
puting are daunting by themselves, and the aspirations of domain scientists to increase
the size and complexity of their simulations by several orders of magnitude compound
them enormously. What is needed is a plan to catalyze a multi-threaded research effort
into numerical methods, algorithms, and software libraries that are most important to the
rapid progress of simulations in the fields of interest to the community.

•	 Improve application orientation of advanced work in methods, algorithms, and
libraries. The development of simulation software, like all mathematical software, is
ultimately driven by the needs of applications, and therefore careful review and analysis
of application requirements is critical. The activities will spread this understanding to
collaborating researchers, using it to fuel and drive research in methods and algorithms
with crucial cases from leading applications while at the same time fostering the use of the
most advanced algorithmic techniques and optimized libraries among domain scientists.

•	 Develop software technologies better adapted to the domain scientists. Because
of the complexity of the system layers that lie between the performance of the raw hardware
and the usable or sustainable performance available to applications, the tradeoff between
the usability of software for domain researchers and their ability to wring performance
out of it tends to be very steep. This challenge is already formidable in today’s high-
performance computing environments, and should current trends continue, looks nearly
insurmountable at the exaflop levels for all but an extremely specialized range of applica­
tions. A sponsored collaborative project to create software technology that dramatically
lessens the trade-off gradient, achieving much better performance with only moderately
greater programming effort, would be of great help.

•	 Sponsor and coordinate expert consulting services for domain researchers.
Faster development of better-quality software would mean that domain scientists could
spend less time writing and debugging programs and more time on research problems.
Coordinating the consulting activities of the methods, algorithms, and libraries commu­
nity for the domain scientists would reduce duplication of software development effort

Productivity and Sustainability Challenges for CSE Software 7

by promoting the sharing of software modules, reduce time and effort spent in locating
relevant software and information through the use of appropriate indexing and search
mechanisms, facilitate the adoption of useful standards, promote the use of superior per­
forming libraries, and so on.

•	 Identify metrics for improving software productivity-sustainability and qual­
ity. Improvements in software productivity, sustainability, and quality should be based on
objective measures of the effectiveness of current practices. These measures provide a base­
line against which the effectiveness of alternative practices can be evaluated as beneficial.
Measures to collect should be chosen to answer specific questions concerning process and
product improvement objectives with the intent of informing the weighing of alternatives
and making decisions on how to achieve those ob jectives. The cost of collecting process
and product data should be weighed in determining what questions can be quantified.

•	 Identify and pursue opportunities for international collaboration on software
as infrastructure for scientific research. The ob jectives and challenges of CSE exper­
imentation are international. Solutions are similarly shared through conferences, publica­
tions, and shared models of physical phenomena. These are subsequently replicated and
validated by other researchers around the world. Opportunities for shared community-
wide advances in using software capabilities as an infrastructure for scientific research
should be pursued at an international level when feasible.

The following sections explore several perspectives on productivity and sustainability.
The topics match the workshop breakout sessions, and serve as a useful factoring of the
broad content scope. Workshop attendees and other members of the scientific, engineering,
and software communities have collaborated in producing the content with the intent of
increasing understanding and providing motivation and direction for future efforts to improve
programmer productivity and software sustainability.

2.2	 The CREATE Pro ject: Emphasizing sustainability and pro­
ductivity

The Computational Research and
Engineering Acquisition Tools and
Environments (CREATE) program
is a multiphase Department of De­
fense (DOD) effort that started in
2008 with the plan to develop and
deploy computational engineering
tool sets for acquisition engineers.
The physics-based software result­
ing from the program has been
used in performance predictions us­
ing virtual prototypes that aug­
ment physical testing to identify
design defects throughout the ac­
quisition process, to substantially reducing acquisition time and cost overruns. CREATE

The productivity and sustainability driven
CREATE Pro ject provides tools for an-
tenna, aircraft, ship and ground vehicle
design. CREATE tools provide virtual
protypes that augment physical testing,
identifying design defects and substantially
reducing acquisition time and cost over-
runs.

Productivity and Sustainability Challenges for CSE Software 8

developed toolsets for:

•	 Meshing and geometry support: the geometry and meshing project improves the ease,
speed, flexibility, and quality of geometry and mesh generation, and enables the generation
of general digital representations and product models of weapons systems and platforms
and operational terrains and environments.

•	 Radio frequency antenna design and integration tools: conceptual design and detailed
analysis tools relevant to virtually all DOD platforms.

•	 Aircraft design tools: fixed-wing aircraft, rotocraft, conceptual design, trade-space explo­
ration, and operational testing and translation.

•	 Ship design tools: shock/damage, hydrodynamics, early-stage design and trade-space ex­
ploration, and operation testing and translation.

•	 Ground vehicle tools: end-to-end mobility solver, provide rapid, physics-based data for
design and trade-space analysis.

2.3	 Providing incentives: Funding agencies, publishers and em­
ployers

Funding agencies, publishers and
employers have an opportunity
to directly influence the incentive
structure of for improved quality
in CSE software, and thus raise
awareness of best practices in soft­
ware engineering and provide mo­
tivation for steady improvement in
CSE productivity. Many CSE soft­
ware teams express a strong desire
to improve sustainability and pro­
ductivity, but the pressures of acquiring funding and meeting project deadlines, publishing
papers, and satisfying employer requirements for rank and tenure or company promotion
leave little time for focusing on these improvements. However, this situation can improve:

Funding agencies, publishers and employ-
ers play an essential role in establishing
CSE software quality expectations. Any
sustained improvement in quality requires
increased expectations from these entities.

•	 Funding agencies: Funding agencies and project leaders can directly increase incentives
for investing in productivity and sustainability by requesting that work proposals and
plans include descriptions of how software will be produced and sustained, how developers
will be trained, and more. By asking for this information a baseline can be established for
subsequent proposals that require a minimum competency in these areas.

•	 Publishers: Publishers can provide incentive by increasing expectations of independent
reproducibility in computational results. When authors know that a reviewer will attempt
to replicated or otherwise repeat their computations in order to produce the same results,
there is a natural incentive to improve numerous productivity and sustainability attributes
of their software base [7, 60]. Similarly, conference proceedings can provide incentive by
evaluating computational artifacts as part of the conference paper review process [82].

•	 Employers: Universities, laboratories and business can elevate the importance of pro­
ductivity and sustainability by placing high value on publications, projects and products

Productivity and Sustainability Challenges for CSE Software 9

that have proven software quality. When coupled with the above funding agency and pub­
lisher initiatives, metrics will be easier to determine as part of the promotion assessment
process [31].

Funding agencies, publishers and employers can play an important role in encouraging
improved quality of CSE software development processes by more explicitly recognizing the
role that software plays in the CSE research they fund, and setting general expectations and
providing incentives related to the software itself. On the other hand, care must be used to
avoid unintended consequences. We believe that the value derives from thoughtful examina­
tion and improvement of software development processes rather than from the achievement
of any particular value for any particular metric. Any metric can be gamed, and if the stakes
are perceived to be high enough, it will be. Rather than mandating specific procedures or
metrics, it seems preferable to set high-level expectations, and let development teams re­
spond as to how they propose to meet those expectations in their project. This is similar
to the approach many funding agencies have taken in response to the Holdren memo [63]
to require that proposals include a project-specific data management plan, which is then
evaluated for responsiveness and adequacy as part of the peer review process.

Funding agencies can play an additional role in fostering improved economics of CSE soft­
ware, acknowledging through their funding models that investments in good SWE during
software development by academic researchers will save money and increase research produc­
tivity in the long term, ultimately producing consistently superior software. The National
Science Foundation (NSF) Software Institutes [91] are responsive to this charge and are on
the path to achieve sustainable, high-quality software for several communities of users. The
Science Gateways Software Institute (SGSI), for instance, will serve as a hub and a software
ecosystem for the development of science gateways [103].

Economic improvements can also include funding long-term software maintenance equally
with software development. Specifically, dedicated staff members are required for long-term
software maintenance. As with laboratory equipment, developed software products require
maintenance costs over time. For example, software like Geant 4 [53] generates more data
than the hardware it models; as such, software maintenance benefits from having a budget
commensurate with initial software development. Another example is the instrumental role
that the Pegasus Workflow Management Engine played in the recent LIGO announcement
of the discovery of gravitational waves [97]. This important discovery required years of
underlying research that relied on critical software tools, thus highlighting the importance
of long-term funding for software maintenance. Funding models such as those invoked by
the NSF typically limit project support to five years, which is insufficient to meet long-term
software maintenance requirements. Finally, funding research on how best to apply SWE
best practices for academic CSE research [12, 32, 59, 113] is important, addressing questions
such as how to balance SWE and infrastructure needs with the needs of a given research
project, within the scope of that project’s overall budget.

3 Role of Software Engineering Research

In the last couple of decades, modeling and simulation have firmly established their impor­
tance in the scientific discovery process. With advances in modeling, numerical techniques,

Productivity and Sustainability Challenges for CSE Software 10

and the ever-increasing power of computing platforms, many highly-complex problems have
become tractable. The role and importance of simulations is obvious with respect to those
phenomena that are inaccessible to theory, experiment, or observations. CSE is also making
its usefulness clear in many fields where experiments are possible but simulations provide
insight at much lower cost, i.e., industrial applications where production design increasingly
relies on simulations rather than large experimental facilities (e.g., [33, 67, 105]). Similarly,
in several instances simulations are instrumental in the design of experiments, a symbiotic
process that accelerates scientific discovery through better designed and understood exper­
imental results (e.g., [123]). While the role and importance of computational science has
been largely accepted by various scientific research communities, similar attention has not
been given to the primary tool of CSE, namely software [39, 62].

CSE software as an enterprise has yet to
emerge as a creative discipline in its own
right. Some modest- to large-sized groups
have understood the need for reliable, ro­
bust, and reproducible results, and give due
importance to their software. Several such
code bases have become community codes
for their respective communities either by
design or through adoption and evolution.
(For a partial set of such examples see [50].)
Adoption of similar practices more broadly
is not just desirable, it is necessary to con­
solidate the role of science through computa­
tion. A strong scientific discovery process re­
quires reproducibility of results, and simula­
tions should strive to meet this requirement.
Although the constantly changing landscape
of system software and hardware makes this
difficult, documenting computational exper­
iments appropriately can mitigate the challenges. This documentation would require a ver­
ified and validated code base with a strong software engineering and auditing process in
place that would allow reconfiguration to repeat a computational experiment. The minimal
requirement to meet the standard of believable scientific discovery is to treat the code base
as infrastructure, similar to the way the experimental facilities are treated.

CSE software as an enterprise has
yet to emerge as a creative disci-
pline in its own right. Both model
complexity and hardware complex-
ity are growing simultaneously, and
they both make the other more dif-
ficult to manage. The time is upon
us to address the growing challenge
of software productivity, quality,
and sustainability that imperils the
whole endeavor of computation-
enabled science and engineering.

The lack of support for computational software as infrastructure has been an ongoing chal­
lenge, and with the change in hardware paradigm right down to the commodity processors
it has become a more complex and ubiquitous issue. Both model complexity and hardware
complexity are growing simultaneously, and they both make the other more difficult to man­
age. The time is upon us to address the growing challenge of software productivity, quality,
and sustainability that imperils the whole endeavor of computation-enabled scientific dis­
covery. Analogously, opportunities abound to improve overall CSE productivity and quality
through modernization and collaborative advancement of software engineering practices.

Productivity and Sustainability Challenges for CSE Software 11

3.1 Expanding software engineering practice

The broader software engineering community has examined and addressed several of the is­
sues that the computational science community is now experiencing. However, their solutions
have found limited acceptance in the CSE community, partly because of lack of exposure
and partly because they are not always applicable, at least without adaptation, in the CSE
community.

Studying those CSE teams that have had success in using software engineering could
lead to a better understanding of where software engineering research and/or adaptation
of prevailing practices can help the CSE community. For example there are areas such as
performance portability and tool support for Fortran that are important to CSE but get
little attention in the wider software engineering community.

CSE researchers need easy-to-use, efficient, and precise software engineering tools that
present clear and immediate benefits to their project while imposing minimal overhead.
Not only do these tools improve productivity and enable development teams to grow, they
provide critical risk management with respect to software errors (bugs). The adoption of
these tools and practices would be accelerated by the dissemination of “learning experience”
reports by CSE peers. Such reports could also describe sub jective and objective changes
in productivity and technical debt during adoption. Of key importance is the method of
dissemination; an online collection alone is not quite sufficient. It should be augmented with
conference presentations, on-site seminars, etc.

The longer-term CSE goal for software engineering practice should be to institute im­
provements that will reduce bottlenecks in the canonical HPC workflow [49]. These in­
clude computational abstractions that reflect the science and math of the problem domain,
hardware-independent abstractions that support problem-specific parallelization and opti­
mization/tuning, automated performance-preserving mapping of software to differing com­
puting configurations, and systematic configurable reuse of verified domain-specific software
capabilities. This goal is anticipated in software engineering efforts to introduce product
line approaches for creating domain-specific families of software. These approaches improve
productivity, sustainability, and quality by leveraging common effort needed to build and
maintain similar software (e.g. for a field of CSE research), providing decision-guided mech­
anisms for deriving software customized to the purpose and technology of each supported
project.

The intent of implementing these recommendations is: (1) to reduce the need for indi­
viduals with multidisciplinary expertise, instead allow individual with diverse expertise to
work in more effective collaboration; (2) to reduce manual labor through automation of soft­
ware activities; and (3) to provide scientists with a virtual experimental framework where
computational capabilities are tailored to the needs of their scientific domain.

The purpose of an experimental framework (e.g., as the realization of product line en­
gineering, providing the means to derive customized computational software) is to enable
performing experiments for understanding and predicting behavior and effects of physical
processes. Such an experimental framework should be conceived as a coherently integrated
scientific instrument which links empirical (physical) data with (numerical) models in a
manner that allows continual recalibration/correction similar to the figure. This instrument
takes the form of a computationally-enabled scientific environment that: (1) provides scien-

Productivity and Sustainability Challenges for CSE Software 12

tists with an operable interface in terms of terminology, methods, and models appropriate to
their field of research; (2) encapsulates access to configurable models of relevant physical pro­
cesses and/or data from real-world sensors; (3) provides capabilities for the management and
iterative performance of an instrumented experimental process (configure models, formulate
experiments, perform experiments to collect data, analyze and evaluate results, and report
conclusions); (4) abstracts the underlying computational environment used for experiments,
with solution software scaled (up or down) and optimized as needed to make best use of
allocated resources; and (5) maintains and improves its capabilities as scientists’ needs and
enabling computational technology evolve.

3.2 New software engineering research

CSE software scale is comparable to the scale of products at large software companies,
while development funding is driven more by domain research needs of new capabilities than
large volumes of product sales. This affects the organization dynamics in a way that may
necessitate different approaches to software engineering. Because funding is driven by novel
capabilities, user requirements change at an accelerated pace, which can be addressed in
part by composable, component-based designs. Some CSE software targets a wide range
of hardware, including unusual and experimental architectures. Combined with the fact
that a significant portion of the value of CSE software is in its performance, this results
in a strong focus on performance portability. CSE software provides vital contributions
to scientific understanding and helps to inform critical decisions in the design of physical
systems. Combined with the high rate of change in the source code induced by shifting
requirements, this puts a strong focus on validation and verification in all its forms. The
results of CSE software should ideally be invariant across changes in both the implementation
source code and the executing hardware architecture. In practice such changes can induce
acceptable variance, requiring the design of mathematical methods and tools to correctly
interpret the differences.

3.3 Transition of research to practice in CSE software community

The CSE community faces a number of challenges in software lifecycles. A great deal of CSE
software begins life as a research pro ject whose only purpose is to generate research results.
If it is found useful, it often grows in both use and size through accretion. Typical ad-hoc
software lifecycles by which CSE software matures often occur slowly and at great expense
(demonstrating some large failures along the way [99]). Typically, by the time software
reaches production-level maturity, the state of the software is such that major development
largely stops and only minimal maintenance efforts can be afforded. Therefore, new software
is created for new research, and the cycle begins again.

This typically slow and ill-defined lifecycle process for research-birthed CSE software
can likely be significantly improved by creating better-defined lifecycle models and processes
based on lessons from the broader software development community. In particular, software
engineering’s agile and product line practices may be attractive for the creation of CSE-
targeted lifecycle models. All practices should be expected to contribute to the engineering

Productivity and Sustainability Challenges for CSE Software 13

discipline necessary to support CSE goals of productivity and sustainability. However, prac­
tices to be adopted should be scalable so that efforts supporting early exploratory research
remain productive while building toward needed quality, reproducibility of results, and sus­
tainability as research needs become more demanding and enabling technology evolves. One
example of an effort to define such a lifecycle model for research-based CSE software is de­
scribed in [13]. Research and more case studies are needed to better define such lifecycle
models and improve their adoption by the CSE community.

Another way to raise awareness for the need of better software engineering in CSE is to
formalize the dissemination of software engineering practices. An excellent example is the
Software Sustainability Institute in the U.K., whose mission is to cultivate better, more sus­
tainable research software to enable world-class research (better software, better research).
In such an institution, research can be focused on a better understanding of the particular
software engineering requirements of the CSE community along with extraction and dissem­
ination best practices tailored to the unique needs of the CSE community through a unified
platform. The U.S. can start by organizing a working group to propose a scope and a charter
with ob jectives, with a final aim of establishing such an institute.

The diffusion of good software engineering practices into the CSE community can also
be stimulated by defining a canonical set of practices appropriate to CSE research projects.
However, any such characterization should be descriptive rather than prescriptive as to
specific techniques or representations to be used. Consensus as to preferred techniques and
representations should be allowed to arise organically through experience and collaboration
within the CSE community.

3.4 Collaboration opportunities

Sustainable software practices in several successful CSE pro jects [9] have common optimal
workflow patterns that support long-term extensibility and collaborative development with
their user community. But often, adoption of the process goes through a series of iterations
to converge on minimal developer productivity impedances through tailor-made customiza­
tions in the process. This intrinsic variability leads to a spectrum of standard practices that
may not conform to recommended definitions. For example, there are different recommended
workflows when using distributed source configuration management like Git (workflow com­
parison) that scales well depending on the size of the team. But, the suitable choice evolves
as both teams and software make their transition in terms of capability, complexity, and
maturity [68]. Due to this dynamic nature in process evolution, research targeted at sci­
entific software is needed to carefully design metrics and to standardize process definitions
that help to continually evaluate progress towards sustainability.

The march towards mature scientific software development requires key infrastructure
and process optimizations in software configuration and automated test management. This
is especially imperative when increase in code and feature reuse correlates with increase in
complexities due to external dependencies (growing software ecosystem). Robust and scal­
able configuration and build system implementations along with rigorous automated testing
do serve as the first level of abstraction to enable portability on existing and emerging hard­
ware systems. Additionally, the configuration process needs to be flexible to accommodate
interoperability issues in multi-model (multi-physics/multi-scale) simulation workflows that

Productivity and Sustainability Challenges for CSE Software 14

http://www.software.ac.uk
https://www.atlassian.com/git/tutorials/comparing-workflows/
https://www.atlassian.com/git/tutorials/comparing-workflows/

often involve mixed-language, individually hosted code repositories. Even though the time
investment in development of these practices can be relatively high during the initial stages
of the project, the productivity payoff can be significant as the scientific software matures.

3.5 Specific needs of small user teams

Processes designed in the software industry for large-scale development needs may not yield
increased productivity in small CSE teams. However, several of them, including automated
testing infrastructure (unit, integration) and test suites, should be followed to catch regres­
sions and to maintain short cycles to feature completion.

Development of continuous integration and deployment strategies through containeriza­
tion techniques (Docker, Vagrant) can provide a powerful platform for both jumpstarting the
learning curve for new users and to ensure repeatability of experiments and reproducibility of
scientific results. Such methods can also provide standard frameworks to disseminate good
software engineering practices, either through software carpentry [112] or canned tutorials,
thereby reducing the barriers for small research teams to adapt to the growing scales in
successful software development.

3.6 Software engineering research roadmap

The understanding of how software engineering research can help the CSE community be­
gins with profiling how software is used in the community. Profiling should characterize
a notional CSE workflow, noting any differences among scientific disciplines and also how
software is used within the workflow, including packaged and custom-built tools. The tools
should be categorized in terms of capabilities provided. It would also be useful to profile how
software is supplied for use in CSE, including a characterization of how custom-built soft­
ware is developed and sustained and which practices are used for its management, process,
requirements, design, implementation, evaluation, and delivery. Characterization of how
software packages are selected, configured for use, and sustained, and any experiences with
shared use of software within or across CSE research efforts would also be very informative.

Once the understanding of the above has been reached, a roadmap (e.g., [30]) can be
developed for research and development for improved CSE software practices. This roadmap
should identify means to improve the computational quality of existing tools for CSE, reduce
dependence of solutions on physical computing resource configuration (e.g. consistent be­
havior from standard math functions like sin/cos), and improve practices for better software
productivity, quality, and sustainability. This will need more effective tools, configurable to
differing needs and with their own sustainability guaranteed, that would enhance CSE pro­
ductivity, quality, sustainability, and means of organizing and integrating tools into coherent
environments for domain-specific scientific experimentation

The final step in the roadmap is to develop the means to transition improved CSE software
practices into use through the establishment of a resource for proposing and discussing needed
improvements and for sharing experiences, productizing, validating the effectiveness, and
sustaining improved practices and tools, and assisting CSE organizations in identifying and
instituting improved practices and tools.

Productivity and Sustainability Challenges for CSE Software 15

https://www.docker.com
https://www.vagrantup.com

3.7 Productive and sustainable: Astrophysics community codes

The astrophysics community has been ahead
of many other science communities in mak­
ing research codes publicly available, and
has been a leader in the development and
adoption of community codes [42]. ZEUS­
2D [117, 118] was one of the earliest codes
to become public, and it has been followed
by several others such as FLASH [52], Gad­
get [114], Enzo [95], Cactus [56]/Einstein
Toolkit [84] and Athena [119] (see ascl.net
for a complete list).

Widespread use of open-source tools has
helped to hasten a change in attitude in the
theoretical astrophysics community. Over
the past decade the concept of a “community
code” has become gradually more accepted,
and young scientists have seen how contribu­
tion to these open-source pro jects can have
a positive impact on their scientific reputation and career prospects.

The astrophysics community is
a leader in fostering community
codes. From the early 1990s codes
such as ZEUS-2D, FLASH, Gad-
get, Enzo, Cactus/Einstein Toolkit
and Athena are part of a long
legacy. Community codes advance
science in numerous ways and pro-
vide incentive for junior commu-
nity members to contribute and re-
ceive recognition.

Having completely open tool chains (e.g., Enzo, FLASH of the Einstein Toolkit used
for simulations, and yt [121] for data analysis and figure production) also helps with the
promotion of open, reproducible research, with some authors releasing simulation parameter
files and yt analysis scripts along with their papers. This makes it relatively straightforward
to reproduce scientific results, supports federally-mandated goals regarding the sharing of
scientific data, and assists with making “apples to apples” comparisons between different sim­
ulation tools [4]. Additionally, investment in a well-architected community code framework
can sometimes have unexpected beneficial side effects. For example, because many needed
capabilities overlap between astrophysics and high energy density physics (HEDP), FLASH
was adopted as the primary open code for the academic HEDP community [107, 122]. The
impact was huge because the academic HEDP community has historically had very little
access to codes capable of simulating experiments for design and analysis. The presence of
an adaptive mesh refinement (AMR) framework [87] with built-in IO, runtime management,
many needed solvers, and plugin-capable architecture has enabled a community code for an
entirely new community in a short time (less than two years) with very modest investment.

Productivity and Sustainability Challenges for CSE Software 16

http://ascl.net/

4 Measuring Software Productivity and Sustainability

One of the fundamental goals of this work­
shop was to gain an understanding of the
current state of software productivity and
sustainability in CSE and discuss strategies
to improve it. But how can we, as a commu­
nity, share, critically discuss, and build upon
the work and experience of others to improve
the state of practice? How can we as in­
dividual software developers and teams be­
come more productive and create more sus­
tainable software? Measurements, metrics,
and indicators are important tools in the ob­
jective understanding, assessment, and im­
provement of any process, including soft­
ware development. They allow us to ap­
ply a systematic, engineering methodology
to the software development process, identi­
fying techniques that are useful and those that aren’t. Broad collection of metrics can also
help identify unintended consequences of changes made to the development process. Ob­
jective metrics can be meaningfully shared and applied to different software development
projects and compared. Metrics may be useful in incentivizing behavior, defining reward
structures, and in influencing the economics of CSE software development.

Measurements, metrics, and in-
dicators are important tools in
the objective understanding, as-
sessment, and improvement of any
process, including software devel-
opment. They allow us to apply
a systematic, engineering method-
ology to the software development
process, identifying techniques that
are useful and those that aren’t.

Although, from its title, the nominal focus of the workshop was on software sustainability
and productivity, there was significant discussion of scientific productivity as well. In many
cases in CSE the ultimate goal of the work is to advance scientific knowledge and understand­
ing. As such, we might wish to directly measure scientific productivity and make adjustments
to given CSE software development processes to improve scientific productivity. Publication
counts are widely used as a basis for measuring scientific productivity. However, publication
counts alone cannot gauge the impact of a publication or collection of publications. Nor
do measures of publication counts or impacts (however they might be defined) provide any
insight into the correctness or reproducibility of the work, or, for computationally-based re­
search, the quality of the software used in the work. All of which are issues currently drawing
scrutiny in scientific research, and serious mistakes can actually retard scientific progress and
impact [89]. Finally, measures of scientific productivity tend to lag significantly behind the
software development process. Papers often do not appear in print until months, or even
years, after the software on which they are based was written. Measures of the impact of
these papers lags further. As an extreme example, Nobel Prizes are typically awarded 20–30
years after the initial publication [86].

This illustrates two of the challenges of attempts to measure the software development
process (or any other). First, there are many different metrics which can be used. How do
we know which is the right one? Second, if we want to use the measurements to improve our
processes, we need a reasonably tight feedback loop, measured in days or weeks—perhaps
a few months—rather than years. Although the connection between software development

Productivity and Sustainability Challenges for CSE Software 17

and scientific productivity remains of interest, as a practical matter, it seems that focus­
ing more directly on the software development process itself is likely to provide a tighter
feedback loop. So we return to the concepts of software sustainability and productivity.
Unfortunately, just as with scientific productivity, we can envision many different metrics
for software productivity or software sustainability.

The SWE community, however, has found a way to address this issue. According to
Rombach and Ulrey [106], “the primary measurement question is not ‘What metrics should
be used?’ Instead, the primary question is ‘What do I want to learn?’ or ‘What is the
measurement goal?’ ”. The goal/question/metric (GQM) approach they advocate [14–16,
96, 106] provides a structured approach to specifying measurement goals, refining them into
a set of questions, and identifying metrics that can answer the question. Following this model,
we recognize software productivity and software sustainability as goals, rather than things
we expect to measure directly. Rather than spending time trying to define productivity
and sustainability in ways that can be quantified, we can develop a set of questions that
address the goals in specific ways, tailored to the situation at hand. Metrics can then be
defined to answer the questions. For example, we may ask the question, “What is the
largest bottleneck or the largest overhead to developers on my pro ject hindering them from
delivering new features?” Metrics that might shed some light on that question include the
average time to rebuild the code after changes, the average time to re-run the test suite,
the average lines of code that are changed in order to add a new feature, the average time
needed to get code reviews performed, the average time spent relearning code before it gets
changed, etc.

Despite the fact that the GQM method has been around for nearly three decades, and the
fact that the SWE community has even more experience in developing and applying metrics
to software and software development, there remains a significant gap: these approaches,
which are well known in the SWE community are neither known nor used to any significant
extent in modern CSE software development. Where they are used, the experience is often
not considered part of the “science” product of interest and is therefore often not reported
in the scientific literature, nor even discussed extensively in less formal settings. There may
be many reasons for this gap but we believe two points are at the core of the problem. First,
most developers of CSE software are trained as domain scientists and have little or no actual
training in the software development aspect of their work, instead picking it up informally
from others who are likewise trained in the scientific domain but not in software development.
This fact has many consequences, including that the CSE “culture” is generally not very
introspective as to the software development processes it uses. Second, the CSE community
and sponsors of CSE research typically do not place a high value on the software produced
in the course of research when compared with the “science” output. A corollary to this is
the fact that discussion and sharing of software development practices and experiences is
also not highly valued.

4.1 Opportunities for investigation

We believe, therefore, that in order to make the measurement of software productivity and
sustainability a useful and widely used approach within the CSE community we must take
steps aimed at understanding how both the CSE and SWE communities use metrics, and

Productivity and Sustainability Challenges for CSE Software 18

understanding how the metrics they have already identified can inform CSE software devel­
opment. We also need to examine CSE as a distinct type of software from many others, and
look for questions and metrics that may be unique to CSE software. And, finally, we need to
look for ways to increase the level of introspection applied to software development activities
within the CSE community. Many of these activities can be connected closely to the issues
and opportunities identified in the previous chapter for software engineering research in a
broader context in the field of CSE.

4.2	 Understanding the use of and experience with metrics in the
SWE community

As mentioned above, the SWE community has extensive experience with attempts to quantify
software, software development, and software developers in order to address a wide range of
questions and goals. By way of example we describe but a tiny sampling in the following
paragraphs.

Agile software development processes tend to be very lightweight and define few metrics.
But the metrics they do define are generally taken very seriously. For SCRUM processes,
the main metric is function points delivered per sprint [79]. This metric is used to measure
process improvement efforts (implemented as part of a retrospective process) but is primarily
used to estimate how many stories can be completed is future sprints. Kanban processes
tend to define the cycle time, or lead time, which is the time between when a story begins
work and when it is completed and delivered to the customer [79]. The cycle time then
becomes both a metric used in iterative process improvement and to identify bottlenecks in
the overall process.

The most common metric in software development processes in SLOC (source lines of
code). It is easy to measure and there are well known correlations between SLOC, the number
of developers, and the amount of features that can be implemented in a given amount of
time. Such data and correlations are very useful to know when doing software estimation.
But as a metric to use directly in process improvement (or to optimize for), SLOC metrics
are widely criticized as being counterproductive.

The standard software productivity metrics mentioned above are fairly coarse-grained
in that they can’t identify what is causing productivity problems; they can only give some
indication if things are getting better or worse. Therefore, mature and skilled teams tend
to also define and use several finer-grained metrics to help pinpoint bottlenecks and areas
that need improvement. For example, Google adds automated monitoring into many of their
build and testing processes to see where time is wasted (i.e., waiting for builds to complete
and tests to run).

But, arguably, the most useful metrics are obtained from investigating where developers
and users spend their time. For example, many traditional software development projects
require issue tracking and require developers to log their time in a fairly fine-grained way.
Metrics such as the number of defects reported, defects fixed, time spent fixing defects, when
a defect was introduced (i.e., the requirements, design, or implementation stage), how long
the defect took to discover, and how expensive it was to address the defect are all recorded
in many pro jects. These types of metrics are some of the most useful in development and

Productivity and Sustainability Challenges for CSE Software 19

process improvement efforts.
In absence of objective finer-grained metrics, it may be useful to investigate if qualitative

surveys of developers, users, and stakeholders can be used to provide a means to determine
if things are improving or getting worse. Such an approach is advocated in [51].

It behooves the CSE community to survey the SWE community’s experience with these
many and varied metrics and the questions they have been used to address. While we cannot
necessarily expect everything to translate directly into the CSE domain, understanding this
prior experience will accelerate the learning process.

4.3	 Exposing the current use and experience with metrics in the
CSE community

It is not as if there is no awareness of SWE in the CSE community, and there certainly are
software teams who thoughtfully try to examine and improve their software development
processes. However, as mentioned above, these activities and experiences are often not well
known because the CSE community and research sponsors do not recognize them as part of
the scientific output and thus the researchers carrying out this work are not incentivized to
spend the time and money required to capture and convey their experiences to the broader
community.

As part of the larger opportunity to expand the practice of SWE in the CSE community
noted in the prior chapter, it would be extremely valuable to identify situations where SWE
practices already in use can, with relatively little additional effort, be exposed for the benefit
of the community. Over the longer term, it may be possible to modify the incentive system,
and eventually the culture to place a higher value on the SWE research that can arise from
such work. However, in the near term, it may be useful to encourage the exposure of this
work by lowering the barriers to such exposure. While it may, at present, be hard for CSE
researchers to justify putting in the time and effort necessary to bring their experience to
the level expected for a paper in the SWE literature, we can provide venues that value the
“experience” paper or presentation with a somewhat lower bar.

4.4	 CSE as a distinct software domain

Although at some level CSE software is software like any other, there are also aspects of CSE
that result in the software products in this community having characteristics that are dis­
tinctive or different than many other types of software [17]. As interest in the understanding
and use of SWE to improve software development grows in the CSE community, there is a
significant opportunity for the two communities to work together to obtain a deeper under­
standing how CSE software is both similar to and different from other types of software. Of
course this is a general software engineering research question (see previous chapter), but
it clearly extends to unique ways to measure CSE software and development processes. In
our discussions at the workshop, there was even speculation that different domains within
the broad field of computational science and engineering might justifiably define specialized
metrics, for instance as the climate modeling community today uses simulated years per day
of computer time as a metric of the performance of their simulations.

Productivity and Sustainability Challenges for CSE Software 20

4.5	 Encouraging and increasing introspection into CSE software
development

The work described above would play a crucial role in helping to understand the role and
potential benefits of measurement in CSE software development. Having evidence of past
successes would also be very valuable in helping to persuade CSE software developers that
their own work might benefit from a closer examination. However, we believe that there are
additional steps which would further enhance the willingness and ability of CSE developers
to use metrics to understand and improve their software and their development processes.

One important aspect is to improve the available tools, and awareness of them, to help
increase the set of metrics which can be obtained more or less automatically just from the
usage of software development and workflow tools. For example, one can automatically
determine the number of comments made on a GitHub pull request (as a measure of the
toughness of a code review) and then try to correlate this with a reduction in software defects
related to that pull request [37]. Another example might be a scientific workflow management
tool that directs (and records) the process for setting up a new simulation or analysis. Such
a tool could record the amount of wallclock time needed to perform each step as part of
recording the intermediate files in a content-management or version control system. Code
metrics, for example line counts (SLOC), complexity metrics, static analysis results, and
others, can be obtained by applying appropriate tools to the code base in a version control
repository and perhaps updated with each commit. Test coverage and related software
quality metrics can be obtained as part of the testing process, which can also be automated.

Compliance requirements and recommendations for software provide another mechanism
to improve and measure the quality of software. Basic items such error handling policies,
bug reporting mechanisms, minimal portability requirements, and test coverage are easily
checked via tools and automatic scripts. While universal standards may not be achievable,
within communities there may be enough consensus to develop meaningful standards. One
approach is the compliance requirements established by the xSDK suite of libraries [111].

Automatically gathered metrics could be made available to developers via a “dashboard”,
to facilitate both awareness and use of them. By working across the community, and informed
by the work of the previously described opportunities, it should be possible to identify a set of
“baseline” metrics, which are easily and automatically gathered, and are generally recognized
as providing useful, actionable input to the CSE software development process.

A second important aspect would be to directly encourage increased introspection of
CSE software development practices by funding such activities. In a whitepaper submitted
to this workshop, Ahalt, et al. propose the establishment of an open, community-governed
framework by which to develop “metrics of success” for CSE software, particularly with
respect to software sustainability [2]. They envision the effort beginning as a funded activity
involving a group of researchers and stakeholders tasked with reviewing their own and other
participants’ software with an eye to identifying metrics which correlate with success of the
software in satisfying stakeholder needs and goals. Such an activity would serve as a pilot for
a future, larger effort to establish and refine a framework for sustainable software metrics.

Productivity and Sustainability Challenges for CSE Software 21

4.6 Measuring productivity and sustainability roadmap

In order to foster understanding, development and deployment of productivity and sustain-
ability metrics, we suggest the following roadmap:

•	 Create a pilot “peer-review group” of grant recipients funded to develop sustainable soft­
ware [2]. The primary goal would be to define and refine CSE software success metrics.
This group could also be involved with any of the efforts listed below.

• Survey existing CSE projects looking for existing metrics, gaps, and opportunities.
• Perform case studies on the GQM approach applied to CSE projects.
•	 Investigate how to improve automatic gathering of metrics from software development and
workflow tools.

•	 Encourage the usage of issue tracking for CSE developers and users to capture finer-grained
metrics (but only if other benefits are derived from the usage of such tools and processes).

• Invest in the usage of dashboards to collect, display, and analyze metrics.
•	 Build a community of individuals interested in process improvement and metrics (e.g., the
application of the GQM method).

5	 New Approaches for Faster, More Affordable CSE
Software

Present day methods for building CSE soft­
ware are remarkably traditional and fail to
leverage knowledge or tools well; one gets
the uneven results of individual craftsman­
ship rather than engineering discipline. We
believe that raising the level of abstractions
used to develop programs can make them
easier to write, easier to maintain and en­
hance, and, crucially, easier to (re)target to
the rapidly changing landscape of high per­
formance computing systems. We also be­
lieve that automation can be provided to
enhance the development process, by offer­
ing complex predefined mappings of abstrac­
tions to targeted hardware, providing timely
analyses of issues in code as it is modified,
enabling the construction of more complex
models, and providing support to reverse-
engineer legacy models into more manage­
able abstractions.

Present day methods for building
CSE software are remarkably tra-
ditional and fail to leverage knowl-
edge or tools well; one gets the
uneven results of individual crafts-
manship rather than engineering
discipline. Increasing automation
in workflows and raising the level
of abstractions used to develop pro-
grams can make software easier
to write, maintain, enhance and
adapt.

As a community we continue to develop better, more extensible abstractions (with explicit
representations) for expressing both our computational intentions and means of achieving
them. In an ideal world this knowledge would be widely disseminated to practitioners via
education, easy web discovery, advanced programming languages, recommender-style au-

Productivity and Sustainability Challenges for CSE Software 22

tomation, and strong automated implementation. These abstractions would then enable us
to specify computations in terms of the physics and geometry instead of solvers pre-biased to­
wards particular architectures on awkward data structures. Abstractions of implementation
advice will enable translation from the specifications to the target architectures, allowing
automation to carry out the bulk of the work under the guidance of the modeler, allowing
her to control the final result in as little or as much detail as is required to achieve desired
performance. Abstractions for mathematics used for various approximations will enable
the modeler to make appropriate tradeoffs and allow automation to implement most of the
details reliably. Algorithms over various data abstractions can be used to realize effective
results in known circumstances, especially in defining and realizing data distributions for
complex distributed hardware systems. Hardware abstractions can provide the essentials
for targeting actual machine properties, such as multicore, glssimd, data parallel, GPU-like,
and FPGA style systems and the communication fabrics that join them, and for automated
reasoning about the performance of various proposed implementations.

Automation can be used to enhance and shorten the program construction and testing
process. Programs at high levels of abstraction can be refined automatically or with advice
down to low-level target machine code, using abstractions and associated implementation
knowledge at all levels from physics down to FPGA configuration. This will produce high-
performance codes with high confidence in correctness. One could associate abstractions
with corresponding tests; then one might also be able to generate tests for the generated
program. The availability of formal descriptions of the specification artifacts and the me­
chanical implementation steps may help the theorem proving community to even prove these
implementations are correct.

An intriguing effect of such automation would be the explicit capture of all the implemen­
tation decisions made by the modeler or the tools in realizing a particular implementation.
Failures in functionality, accuracy, or performance might then be tracked back to specific
implementation or specification choices, to be replaced by more effective choices. This will
shorten development times by enabling fast experimentation cycles. All this implementation
knowledge could be used by mixed-initiative reverse engineering tools to abstract legacy
programs, removing design decisions focused on legacy architectures or less than ideal im­
plementation algorithms. This would allow applications to be migrated more quickly to new
architectures, allow models to have longer useful lives, and reduce software maintenance
costs by helping the modeler understand the design choices in such legacy code.

5.1 Suggested research directions

Many CSE software teams work to incrementally improve productivity and sustainability
while developing new software capabilities. However, there is very little effort in the CSE
community dedicated to research in methodologies as a first-order concern. Below we describe
specific research directions that can benefit from explicit and direct funding.

Productivity and Sustainability Challenges for CSE Software 23

5.1.1	 Productivity through continued knowledge development, capture, and
dissemination

As individuals we have the skills and knowledge we acquire by education and exposure. One
significant way to advance our individual productivity is to acquire useful knowledge more
easily.

This initially suggests the need to create additional useful knowledge. To support CSE,
there should be continued effort to develop abstractions of various elements of working sys­
tems, at all levels of design and understanding of those systems, e.g. science, mathematics,
algorithms, data, computer science, and hardware.

Deeper understanding and clearer descriptions should enable better engineering. Devel­
opment of these ideas by the community facilitates expert contributions and increases buy-in.
Some additional emphasis on making this information known through demonstrations, lec­
tures, teaching, and technical papers is required to help spread the results.

Simply capturing such concepts in traditional ways leaves us limited to our individual
learning efforts; as the library of good ideas grows, it in fact becomes increasingly hard to
learn enough to be effective. We must find ways to package that knowledge for easy access
and easy delivery to practitioners. One approach includes building software libraries that
realize the concepts to enable direct reuse. Ideally, such libraries can be used and mixed
at multiple levels; this requires flexible interfaces to enable easier integration into targeted
software [64]. The difficulty here is that the engineer must be proactive in discovery and use
of such libraries to gain benefit. Another more proactive approach is to create automated
tools that contain this knowledge and metaknowledge about when and and how to apply it
effectively, and make such tools available to practitioners. A third, intermediate approach,
is to create a domain-specific environment that streamlines building of software for a specific
field of CSE research. Using a product line engineering approach, engineers can create an
environment that encompasses the terminology, knowledge, and components appropriate
to that field. Scientists can then use that environment to derive software for performing
specific experiments based on their decisions concerning models, data sources, analytics, and
computing infrastructure to be applied.

Many tools that can provide automated analyses of errors in code have been proposed
(e.g, physical units checking) or even implemented commercially (static analysis of pointer
errors), yet are not widely used. A variety of tools that capture knowledge about how to
generate code from abstractions have been built over the last 20 years (e.g., [3, 20, 71]). A
variety of custom code generators for special architectures (CUDA, OpenMP, OpenACC)
have been implemented. We need to determine what these tools have in common to make
them easier to engineer and apply to application codes. There has been research in general-
purpose foundations for such tools [78, 92, 101] and even production tools [23]. Most of these
tools are non-interactive; the problem is posed up front and the tool produces an answer with
little interaction from the the engineer. Ideal versions of such tools would provide interaction
with the developer as they produce code, providing better alternatives and means to analyze
tradeoffs between such choices.

Virtually all code generation tools (including our “trusted” compilers) have informal
foundations: there is no explicit specification of the semantics of the abstractions or real­
izations of those abstractions, let alone a formal proof that the realization actually models

Productivity and Sustainability Challenges for CSE Software 24

the abstraction correctly. While we may test such generators to gain empirical evidence of
reliability, we have no theoretical basis for that confidence.

Yet there has been considerable work on formal development processes for software con­
struction, and automation, including theorem proving, leading to applications that can be
correct by construction. There have even been some examples of formal development for sci­
entific codes [48, 85]. Correct automated generation could lead to faster development times
by virtue of avoiding time spent debugging. And provably correct optimizations could lead
to more efficient implementations. Multiple implementation methods could enable portable
programs to be correct on arrival. A key problem here is the ability to specify approxi­
mations in a formal way, to compute reliable estimates of numerical error produced by an
approximation, and to enforce the achievement of error bounds in generated programs.

5.1.2 Productivity through design capture, display, and revision

When working with existing software, we invariably lose the knowledge that went into its
construction. Mostly all that remains after a development cycle is a mountain of code,
some out-of-date technical documents, and some implicit understanding on the part of the
developers, which rapidly fades as they move on to other tasks or career changes. We then
pay a very high price in rediscovering that design knowledge when trying to understand,
enhance, evolve or tune the software.

We should find ways to capture construction knowledge as the software is being con­
structed, expose this knowledge to developers and tools that are working with the code, and
update this knowledge as the application is modified, so it is available for the next developer.

In particular, we must find ways to associate design knowledge permanently and reliably
with code. Stale design knowledge is often worse than none by providing time-wasting red
herrings. Of particular importance is the ability of the user to easily inspect the knowledge
used in the design, and understand how that knowledge has been used by the code. New
user interface techniques to make this practical may be needed. Overwhelming scale may
be a particular problem; informal measurements indicate that large applications can contain
millions of design choices.

Ensuring this state of affairs permanently is difficult. If an engineer can skip recording
such design knowledge it will likely be skipped in the interest of short-term gains, leaving the
present situation of decayed design knowledge unchanged. It may be necessary to force the
user to provide the design information to get code. One may be able to alleviate this by hav­
ing such design information provided by smart tools as they make decisions for the engineer.
(Kant/Scicomp accomplishes this by recording a series out design-choice outcomes.)

With a product line approach, decisions are an integral element of deriving software as
an instance of a preconceived family. Many decisions concerning software capabilities and
computing infrastructure are common to the family and can be made by the software engineer
but others can only be determined according to each scientist’s needs. These decisions
are deferred to be made by the scientist and then used to guide mechanical selection and
customization of prebuilt components that provide the specific capabilities that the scientist
needs for a planned investigation. Changes to decisions are realized as derivation of a new
version of the software.

The construction knowledge to capture should include descriptive abstractions from the

Productivity and Sustainability Challenges for CSE Software 25

problem and solution domains, such as those suggested above and an explicit relationship of
those abstractions with realized code.

For example, the ideal design would capture the physics problem to solve in its most
abstract form, and follow the reification of that most abstract form via algorithms into
code for programming languages designed for special classes of hardware. Some of this
knowledge must describe desired performance properties of the target application (e.g., target
hardware, throughput, error rates). A rationale for individual design choices should be
present to justify the legitimacy of that design choice, and ideally, the design knowledge will
include alternative possible implementations and tradeoffs among alternatives to allow easy
exploration of alternative realizations.

Somewhat informal approaches have been tried (Conklin/GIBIS, Desclaux/MACS) to
capture rationales and qualitative tradeoffs between named design properties. It is unclear
how one ensures design capture with these tools or how effective they are. More automated
approaches have been tried as “CASE-based reasoning” in the AI-in-design research common
in the 1980s. Baxter [18] has provided theory for how this might work for software and has
demonstrated the concept in the small scale. We need more research into how to “refactor
a design” to achieve this vision.

5.1.3 Productivity through design recovery and modernization

In an ideal world, existing software would come equipped with accurate design knowledge.
Our world is not ideal, and the existing successful application code base is so large that it
seems impractical to rewrite all that code from scratch to capture the design. What might
be possible is to recover design information relevant to the task at hand, justified by the
observation that most changes to programs, do not affect most of the program.

What is needed is an approach to rediscover design information from legacy code (C,
C++, Fortran, build scripts) focused only on the part of an application where understanding
or change is needed in a form ideally compatible with design knowledge capture as outlined
above.

Stewart [115, 116] has investigated reverse engineering of scientific codes. Baxter [21]
suggests theory for recovering specifications and implementation steps by applying concept-
refining transforms backwards in the implementation space. Rich [104] suggests how to
rediscover abstractions in conventional computer code from idiomatic patterns with implied
dataflows. Baxter [19] has implemented production tools to accomplish the program anal­
ysis (PA) vision in factory automation domains, using programmer-supplied explicit idiom
descriptions written in source-code terms, including specific design choices where multiple
choices are possible and the ideas appear to transfer to scientific computing. [23, 101] provide
tools that can accomplish the difficult task of parsing C, C++, and Fortran codes completely
and compute the necessary dataflows for abstraction discovery by the PA method. [22] shows
how to build practical tools to find potential code abstractions by locating cloned code; such
code is cloned because the users had a simple conceptual model of what it did. We note that
these techniques may be very useful but are not likely to cover the entire set of abstraction
recovery techniques necessary.

With design recovery, programs will become easier to understand and therefore easier to
modify/extend/tune for performance.

Productivity and Sustainability Challenges for CSE Software 26

One might wish to modernize an application by removing legacy constraints (old software
architectures, targeted hardware architectural assumptions, legacy algorithms for computing
boundary conditions, etc.). Design recovery coupled with design revision should enable one
to focus on removing the troublesome design aspect. What we need is “refactoring program
designs” to remove undesired constraints, leaving the implementer free to revise the program
to the new functionality or performance desired.

5.2 New approaches roadmap

The community needs to continue investigating the abstractions and relationships between
the abstractions, that comprise the various design levels used to support the construction
of scientific code, including abstractions of the design levels themselves. We assume that
development of such ideas will continue as conventionally funded research.

Specific research topics useful in the scientific space would include but not be limited to:

•	 Defining approximations and automated computation of error bounds
•	 Automated estimation with integrated empirical measurement of performance, with iden­
tification of performance bottlenecks

•	 Optimization techniques for various optimization goals: design effort, time, space, power,
target-hardware, accuracy, or understanding

•	 Means to specify various kinds of communication (e.g, async, broadcast, reduction) across
different architectures (tightly coupled, hierarchical, distributed memory, heterogeneous
execution units) and how to partition abstract programs into elements communicating
between and operating on those architectural parts

But the results of this research should be explicitly encoded into tools to bring that knowl­
edge in a usable form to the software engineer rather than just a prototype implementation
or technical documentation. However, one should not build separate tools for each bit of
knowledge and each target programming language, or this knowledge will not be composable
for individual applications or across communities. One should choose at best a small number
of platforms for encoding this knowledge to aid if not enforce composability.

One choice might be to cast such knowledge as traditional Fortran or even C++ template-
based libraries, to the extent that all future applications will be coded in these specific
languages. As this is unlikely, a better choice is some framework that can mechanically ma­
nipulate arbitrary sets of abstractions/specifications (which happen to include programming
languages), in extensible ways. We see the notion of program transformation of abstractions
at multiple levels as the unifying vision here, as the Neighbors/Draco framework initially
demonstrated; much work in program construction is cast in this form of domain-specific
languages and corresponding transformations (e.g., [3, 83]). One element of a product line
approach is the definition of a domain-specific notation by which scientists can specify the
deferred decisions that determine the software capabilities needed for planned experiments.

It may be that such tools are used to generate libraries to support conventional language,
subsuming the traditional approach. We also observe that such frameworks can provide a
solid basis for better (“refactoring”) IDEs supporting direct programming of applications.
We view these as near-term payoffs, which would be accelerated by funding specific IDE
support.

Productivity and Sustainability Challenges for CSE Software 27

We need deeper understanding of the ideas and mechanisms behind such frameworks
to ensure an easier capture and use of abstraction and refinement knowledge. Broader
experimentation with existing systems such as [23, 71, 78, 101], can be tried to obtain
experience. Such experimentation will be necessary to introduce the scientific community to
the ideas of automated implementation and the change of perspective from manually coding
to controlling the development process with the tools doing the bulk of the coding work. We
remark that these systems require big investments (Baxter, Kant, Quinlan, Klint all have
decades of investment in each of their respective systems); do we need to build on these
platforms or invest in building better replacements? Integration of formal models and proofs
should be considered; the program transformation frameworks have a natural place for these
elements.

To be effective longer term, these systems must be interactive so that knowledge can
be exposed, inspected, applied, and removed with impunity by the engineer; the Rascal
system is experimenting with interactive interfaces. Visual modeling tools can aid effective
understanding. Such interactive systems will likely make training easier for novices because
of the ability to personally experiment with direct feedback.

By unifying abstractions and refinements to lower levels, one should be able to build and
maintain product lines of scientific software, with different variants solving different problems
on different target architectures. In a product line approach, software engineers create an en­
vironment tailored to build software relevant to a specific field of scientific research (reflecting
the terminology, computational and experimental techniques, and technology used in that
field). That environment is then used by scientific teams to produce software customized
to the specific needs of their planned investigations. Many aspects of such environments
may be common across multiple fields of research, allowing leveraging of the effort needed
to build such environments.

To ensure that these tools lead to long-term sharing, the abstractions they use must be
separable from the tool and sharable with at least other instances of the tool, if not other
tools. The latter is very difficult; environments for shared tool infrastructures have been tried
many times in the past and failed, largely due to disagreement about the precise nature of
the data exchanged between the tools. Being able to export the concepts to other users will
help ensure uptake. One might consider establishing a central repository for such knowledge.

Long term success in building and maintaining complex software requires we avoid losing
our hard-won knowledge about how the applications are designed and built and the assump­
tions made. While some ideas about design capture and revision have been proposed, none
has been seriously tried. Automated tools such program transformation engines provide the
promise that some design choices can be easily represented, applied, and stored, but we
have no experience actually doing this. It may be that even a different direction is actually
required; the informal decision capture of [38] may be useful and it would take less effort to
achieve. As the work to try this on realistic code is necessary to prove its value, and that
work is likely to be significant, support for building such experiments must be found. Suc­
cess here would be valuable not only for scientific computing, but for software engineering
in every other application area. While this may be high risk, it is a high payoff gamble.

Productivity and Sustainability Challenges for CSE Software 28

6 Economics of CSE Software Tools

The economics of software tools have proven challenging to understand for users and stake­
holders in CSE. In the past, many funding agencies have supported academic and govern­
mental research that produced high-value (but not necessarily high-quality) software as a
byproduct of the proposed research, not as a direct aim of the proposal or line item in the
budget. In other words, funders did not allocate money specifically for the development
and maintenance of software, although software was often developed to support the funded
research. In CSE research, existing software is not always a good fit for a particular pro ject
or, in the case of commercial software, is prohibitively expensive. The result is that scien­
tists frequently develop their own software, spending as much as 30 percent of their time
doing so [57]. The time (usually unfunded) that scientists spend developing software repre­
sents a significant portion of overall CSE software economics. There are many dimensions
to improve the production, distribution, and consumption of CSE software. This includes
approaches to improve how researchers spend their time developing software and methods to
provision an infrastructure, and to encourage a culture that supports high-quality software
development. These factors are often intertwined.

For example, how does one convince or incentivize academic CSE researchers to adopt
best practices in SWE when the main goal of the researcher is to quickly produce research
results, not the software used to get those results? A common perception among researchers
is that if one-off, custom-developed, poorly architected code can yield research findings
in a timely manner, then why spend time creating well-engineered and sustainable code?
However, from a CSE software economics perspective, this short-sightedness could haunt a
researcher downstream. The researcher often does not appreciate the value of high-quality
code developed using best practices in SWE. For example, in the absence of a verification
and validation testing framework there is increased risk for code errors that can result in
erroneous research findings. Inaccurate research findings may then lead to scientific paper
retractions, damage to one’s scientific credibility, and potential societal implications with
real economic costs (e.g., faulty commercial products). Moreover, if the code is not well
engineered and documented new developers will have a difficult time contributing to the code
and will introduce inefficiencies through time spent learning the code and refactoring it, if
that is even possible. If a graduate student develops the code additional inefficiencies may be
introduced, as the amount of time a graduate student is in school is relatively short; thus, new
students will require training on a fairly frequent basis. As time goes on, these inefficiencies
will amplify, making it increasingly more difficult and time-consuming for developers to
determine what the code should accomplish, identify errors in poorly architected code, and
refactor the code.

Yet another factor that impacts CSE software economics is the fact that academic budgets
are meager when compared to industry budgets. Academic researchers cannot compete with
their industry colleagues in attracting and retaining good software talent, creating better
infrastructure for development of CSE software, and learning from and leveraging industrial
models of software development.

All of these CSE software economic factors, while significant, are not insurmountable.
Tremendous opportunity exists for funding agencies, CSE researchers, and stakeholders in
academia, industry, and government to work together to identify and implement solutions

Productivity and Sustainability Challenges for CSE Software 29

to the challenges. In the next section, we will explore some of the proposed solutions that
CSESSP workshop participants identified to improve CSE software economics.

6.1 Descriptive examples

The economics of SWE and development is a well-studied field, with seminal work dating
back several decades [25, 26]. While these early efforts and subsequent ones have moved
the field at-large forward, unique challenges have emerged in the economics of academic and
governmental CSE software generation. Among the topics and opportunities unique to CSE
software economics include: addressing the current cultural economics of CSE tool develop­
ment; establishing new academia-industry-government partnership models; identifying new
incentives for retaining top software talent; and enhancing the role of funding agencies in
each of these efforts.

6.1.1 Addressing the current cultural economics of CSE tool development

As previously stated, in academic CSE research, existing software often is not a good fit
for a particular pro ject or, in the case of commercial software, is prohibitively expensive.
The result is that scientists often spend significant amounts of time developing their own
software, even though few incentives exist for software development in traditional tenure and
promotion decision-making processes [66]. In other words, the time that an academic scien­
tist spends developing software is not rewarded or recognized as a significant, independent
accomplishment. Instead, tenure and promotion are based primarily on influential research,
a successful publication record, the acquisition of grants, and teaching, not on whether one
can author good software. Various groups have put forth ideas and approaches to change
the academic tenure and promotion process, including the ability to cite software and meth­
ods to assign software credit [54, 69, 72, 100, 129]. However, the academic and government
entities who support CSE research must also encourage the creation of well-engineered, high-
value software and tie the recognition and credit for such efforts directly to the tenure and
promotion process.

Another issue that affects the economics of CSE software development is the lack of
sustainable code. As discussed in previous chapters, unsustainable software may result from
poor documentation, poor code architecture, and/or general lack of SWE best practices.
Unsustainable code, by its very definition, is difficult for subsequent developers to contribute
to.

The opportunity exists to convince and incentivize CSE researchers to apply SWE best
practices from the very start of any research project that entails the development of new
software code. The perception must be overcome that the use of one-off, custom-developed,
poorly architected code to rapidly produce new research findings may be less cost-effective
than an initial investment in time to create well-engineered and sustainable code.

From a CSE software economics perspective, the absence of SWE best practices in aca­
demic and governmental CSE software development is short-sighted and could have adverse
consequences, especially if the developed software is intended for widespread community
adoption. The consequences also may have long-lasting impact on a researcher’s career if,
for example, poorly architected code yields erroneous research findings. Moreover, while lit-

Productivity and Sustainability Challenges for CSE Software 30

tle time may need to be invested in the development of one-off, custom-developed CSE code,
downstream time devoted to the maintenance of poorly written CSE code may be significant
and detract from research time resulting in poor CSE software economics. Some estimates
put software maintenance at 60 percent on average of software costs [55]. Also, if the CSE
code is not sufficiently and continually tested over the course of its lifespan, errors are more
likely to be introduced into the code and subsequently, the research findings. Erroneous re­
search findings may result not just in paper retractions, but in a loss of scientific credibility
and potential societal impact with real economic costs (e.g., faulty commercial products)
[125]. Efforts such as Software Carpentry [112] are initially needed to train CSE researchers
in the early application of SWE best practices to any effort to develop community software
code, and subsequent more advanced training is also needed. Such efforts will yield positive
effects on both CSE software economics and CSE research.

A more forward-looking approach to address the current cultural economics of CSE tool
development is to shift the focus from developing individual tools or applications to building
an ecosystem for developing tools and applications [11]. Indeed, CSE tool development in­
frastructures are not pervasive, but they need to be. For example, consider the R statistical
framework [102]. An R software package can serve a group as small as two users or one
as large as thousands of users. R provides an excellent model for how a single tool devel­
opment infrastructure, coupled with strong community buy-in, can efficiently support tool
development with any number of users.

6.1.2 Establishing new academia-industry-government partnership models

The economics of CSE software tools can be improved upon by exploring successful part­
nership models that can inform the broader academic and governmental CSE community.
There is a spectrum of successful models in academia, industry, non-profit organizations,
and national laboratories. Government projects that know concept-to-supported product
lifecycle costs well (not just software) can better inform CSE science projects. The success
of these models can be defined to include dimensions of sustainability, open source commu­
nity development, efficient production of well-architected code, and more. The opportunity
exists to focus much more study on how to translate these partnership models to better serve
the needs of the CSE community.

Industry, for instance, is well suited to partner with academia on the development of code
as a model for scientific software sustainability. The Hierarchical Data Format (HDF) [58]
and the Visualization Toolkit (VTK) [126] provide examples of academic software products
that were successfully transferred to industry. Industry, in turn, can collaborate with uni­
versities to acquire federal funding to support scientific software development. An example
is Kitware Inc., which has received funding from the National Institutes of Health (NIH)
in collaboration with the University of North Carolina at Chapel Hill to develop scientific
software for application in the prediction of stroke outcomes, using 3D models of brain blood
vessels [77]. Finally, academia-industry consortiums can be very effective for CSE software
development and maintenance. Two successful examples include the iRODS consortium [70]
and the Kerberos consortium [75].

Industry supported open source software development models may well inform academic
CSE software development. For instance, the estimated value of software contributed to the

Productivity and Sustainability Challenges for CSE Software 31

open source Fedora Linux pro ject is over $10B [88], even though Red Hat, the company
that oversees Fedora’s development, hasn’t spent anywhere near that much. In addition, an
impressive 65 percent of Fedora’s code is maintained by over 20,000 volunteers [88], suggest­
ing that open source software economics can work well. While Linux open source software
development models are especially large examples, smaller, but successful, CSE open source
software examples exist using a variety of partnering models, including OpenFOAM [94]
and NAMD [90]. Open source software development requires community building from the
onset, and successful open source projects continuously gain new community support over
the software lifecycle. Community building must take place concurrently with software de­
velopment. This is of paramount importance, particularly if the software is intended or
anticipated to have a broad community of contributing end users. However, concurrent com­
munity building is inconsistently implemented. Workshop participants acknowledged that a
formalized approach for implementing concurrent community building would be beneficial to
the CSE community. Moreover, if a specific CSE software product is initially developed for
the developer’s own use, but then later finds a community of interested users, a decision point
needs to be identified whereby the developer engages the relevant community concurrently
with further software development. Recommendations and support for developers who find
themselves in this situation would be useful. A community construct can also be useful in
the more efficient and thorough evaluation of software [2].

6.1.3 Economics of commercial software

As mentioned earlier, to be considered successful in delivering financial impact, M&S itself
must be performed with productivity in mind. The productivity of M&S depends on people
and computing, where computing includes both hardware and software. Analyst or people
costs have not been increasing due to the world supply of talent. Dramatic cost reductions
in hardware, attributable to Moore’s Law, have greatly expanded computation and storage
capacities affordable at consistent budgets.

Intuitively, more hardware produces more value when more processors can be tasked
with ensembles, executing more (independent) problems concurrently, larger problems than
possible with fewer processors, or faster solution turnaround – less “wall clock time” than
computing with fewer processors.

Naturally, a user would like to use their software on whatever size computer s/he was
able to afford, and the digital replication of the software on 10, 100, 1,000, or even 1,000,000
such processors imparts no material cost on the vendor (if there were, open source would
not be possible). The implications of software licensing alternatives are examined in Table
1.

For most of the challenges identified above, commercial vendors are the first choice to
supply industry and manufacturing with CSE software. Historically, pricing of commercial
software licenses were tied to “seats” (desktop user) or processor counts (on a server). And
to the extent such calculations involved small numbers on the hardware side, the software
license costs roughly matched changes in hardware even though purchasing was independent
in most cases.

But as affordable hardware enabled greatly expanding the size of computing facilities on
steady budgets, the software costs aligned with hardware steadily increased, if not acceler-

Productivity and Sustainability Challenges for CSE Software 32

Software License Result
$ / (core or node) Penalizes user’s investment in more hardware via “artifi­

cial” software limit, impacting uses such as turnaround-
time reduction, acceleration of design space exploration
and parametric sensitivity analysis.

Single-node license Problems with small central processing unit (CPU) ad­
vantage but bound by memory unable to leverage mul­
tiple distributed physical nodes for larger memory pool.

$ / accelerator Accelerators (graphics processing unit (GPU), Xeon
Phi, field-programmable gate array (FPGA)) can result
in dramatic energy use and performance advantages.
Recognized costs to vendors should not be adversely
transferred to users per (core/node) above.

$ / concurrent user Ideal for predictable, large user base allows full system
use. Detrimental when overlapped use “spikes.”

$ / registered user Ideal for small user base continually using software al­
lows full system use. Vendor must rely on users not to
exploit.

Unlimited on-demand Allows full system use, given predictable runtime
scheduling. Highly customizable to wide range of user
need, costs may be hard to predict.

Table 1: Sample implications of licensing models on application in Industry/Manufacturing

ated, for ardent end-users. These software license costs imposed a pragmatic limit on the
potential value of M&S, notwithstanding potentially greatly expanded technical capability
of the hardware and software. While a few commercial vendors have introduced innova­
tive pricing structures to mitigate scale-penalizing of their users, the industry has proven
averse to change and uncertainty in revenue, particularly for vendors with broad consolidated
portfolios.

Such cost limitations have led to the expansion of open source and internally written,
curated, and maintained codes in industries such as biology, finance, and oil and gas. While
many companies resist noncommercial options, they are compelled to adopt open source
or internal development strategies when the cost-scale penalties for requisite functionality
become exorbitant. Such software has no usage restrictions, there is in-house expertise on
both the algorithms implemented in the software as well as how best to use it, and novel
ideas can be implemented to provide potential competitive advantage.

Countering such possible benefits are the need to have a team of developers with the ex­
pertise in the physics modeled and the models themselves, as well as how to implement those
models efficiently on HPC systems. If the end users are not part of the development team,
the software will require special attention to usability and documentation, attributes that
are often overlooked. As HPC systems become increasingly complicated, developing efficient
software for future architectures requires ever-increasing commitment to such knowledge and
capable resources.

Productivity and Sustainability Challenges for CSE Software 33

6.1.4 Shared public-private journey

Government, academia, and industry all share the ever-increasing difficulty to discover al­
gorithms and create efficient implementations of those algorithms on the rapidly evolving
hardware. Developing domain specific languages, libraries and reusable components that
can be incorporated into all types of software (provided the right license model) can help
contain complexity and improve developer productivity, enabling software developers to port
applications to modern platforms while protecting the significant prior investments.

For application developers to adapt such abstractions, we need to develop a sustain­
able ecosystem which needs to include longer-term commitments to funding and publishing
roadmaps for software toolchains (e.g., compilers, runtime containers, services, profilers, de-
buggers), components (e.g., libraries, microservices, translators, interoperability), documen­
tation and training, reference implementations showcasing the use in real life applications,
commitment for optimized implementations from system providers, and most importantly,
“critical mass” participation and buy-in from the software developer community in all of the
points above.

CSE software paced by the momentum in advanced hardware architectures can be a
valuable tool to industry and manufacturing, harnessing the power of computation as both
an engine for productivity and efficiency, and as an instrument for insight and discovery. In
considering the perspectives highlighted throughout this document, prudent appreciation of
commercial subtleties such as legal terms, cost structures, and regulatory obligations should
be applied.

6.1.5 Identifying new incentives for retaining top software talent

The retention of top CSE software talent can be challenging for academic and government
laboratories that have meager funding when compared to industry colleagues and thus cannot
match industry salaries. Alternative, non-monetary incentives must be identified to help
academic researchers attract and retain skilled CSE software personnel. CSESSP workshop
participants identified the following examples of non-monetary incentives:

•	 Prestige, knowing that you are contributing to something that is important at a local,
national, and/or global scale and public recognition for your contribution;

–	 e.g., all U.S. national weather data stored in HDF.

•	 Greater sense of community involvement, ability to work collaboratively with a community
of users.

•	 Recognition of the greater freedom and creativity available in academic jobs compared to
most industry jobs.

•	 A sense of service, doing something for the broader community, nation, world.
•	 Job descriptions or course descriptions that use the right language to attract top talent.

–	 For example, at the 2014 NSF Cyber-Physical Systems Principal Investigators’ Meeting
(CPS), it was reported that a massive open online course (MOOC) attracted more
interest when advertised as relevant to the “Internet of Things” or “Applied Robotics”
than when advertised as “Embedded Software Design” [47].

•	 A clearer career path, especially for long-term career paths, and titles such as “research

Productivity and Sustainability Challenges for CSE Software 34

software engineer” [61, 73].

This last point on career paths and titles is critical because the current lack of recognition
of software activities in tenure and promotion decision making strongly influences recruitment
and retention of top talent in software development. This is true at every career level,
including graduate students, postdoctoral fellows, faculty, and staff. As stated previously,
academic and government entities who support academic CSE research must also encourage
the creation of well-engineered, high-value software and tie the recognition and credit for
such efforts directly to the tenure and promotion process in order to attract and retain top
CSE software talent.

6.2 An urgent need for productive and sustainable tools

Increasing CSE hardware speed and com­
plexity, software environments and problem
sophistication are driving an increase in re­
quired developer knowledge and SWE best
practices, decreasing the number of devel­
opers able to work on CSE grand chal­
lenge problems, and increasing the gap be­
tween SWE and domain developers doing
coding. The CSE user and funding commu­
nity needs urgent recognition that these eco­
nomics neither work nor are sustainable, and
new models are needed. Furthermore, the
CSE community needs to identify and de­
velop improved models of CSE software tool
economics that drive hardware architectures
and not vice-versa. CSESSP workshop par­
ticipants, through the discussion topics doc­
umented herein, identified the critical activities in the Section 6.3 roadmap to address key
software tool economic challenges facing the CSE community.

Hardware, software and problem
complexities are dramatically re-
ducing the number of developers
who can effectively use CSE en-
vironments to address grand chal-
lenge problems. New models are
needed to spur development of pro-
ductive and sustainable tools that
expand access to and usability of
CSE capabilities.

6.3 Software tools roadmap

The following roadmap presents a strategy to realize opportunities and overcome challenges
of CSE software tool economics discussed herein.

•	 Fund research on how academic and governmental CSE researchers spend their time de­
veloping and maintaining software throughout their careers (see Section 4 for additional
discussion on this). Correlate this to CSE software tool economics demonstrating a range
of approaches and where and how improved efficiencies are achieved.

•	 Fund research on how to improve upon academic and governmental CSE SWE. There
is need for a holistic view of what constitutes “optimal” economics for software tools,
e.g. hardware, software, partnerships, metrics, funding, social, community, incentives,
and more.

Productivity and Sustainability Challenges for CSE Software 35

•	 Create many more SWE training and education opportunities for CSE career-oriented stu­
dents and CSE researchers, especially early career CSE researchers. In these courses, high­
light how CSE software tool economics are impacted by the SWE choices made throughout
their careers.

•	 Position the CSE community to require federal funding agencies acknowledge the impor­
tance of funding software maintenance concomitant with how hardware maintenance is
funded.

•	 Position the CSE community to require federal funding agencies to support long-term (e.g.
more than 5 years) software development and maintenance of high-value CSE community
software and infrastructure.

•	 Position the CSE community to require academic and governmental entities recognize
the creation of high-value CSE software with good SWE as a direct factor in the tenure
and promotion process concomitant with how one’s publications and research record are
considered.

•	 Create more career opportunities and tangible non-monetary incentives to attract and
retain CSE research software developers and research software engineers.

•	 Create a body-of-knowledge on how to instantiate, grow, and sustain successful industry,
academia, and government partnering model (e.g. consortiums) to sustain high-value CSE
community codes.

•	 Create a body-of-knowledge on how to instantiate, grow, and sustain successful CSE com­
munities (e.g. open source communities) with a vibrant community of contributors. An
improved understanding is needed on how to best build CSE community while developing
CSE software.

•	 Encourage funding agencies to fund the creation of more CSE infrastructures for creating
CSE tools and help make CSE researchers more efficient in tool generation. For example,
in R&D software tool concept-to-supported-product lifecycle models, don’t build a tool
at a time, rather build an infrastructure for building tools to improve CSE software tool
development economics and efficiencies.

7 Social Sciences Applied to CSE Software Systems

Software development is a social challenge, as well as a technical one. The creation and
maintenance of software involves constant interaction between people across domains, roles,
and communities. Since most projects involve more than one person, and even single-person
projects usually create or use software dependencies, social science research can be benefi­
cial in addressing issues across the whole software lifecycle, from requirements gathering to
development and maintenance to end-of-life.

CSE software development involves particular social groups and dynamics: the main
stakeholders are researchers for whom research outcomes are of highest priority, and software
is often viewed as a means to an end rather than the goal itself; these researchers are not
professional software developers. There is a body of existing research studying CSE social
dynamics (e.g., [44, 109, 110]), and discussion of that work has impacted the thinking of
code developers and pro ject managers in CSE, leading to social practices widely thought
to support more effective software development. For example, studies which looked at the

Productivity and Sustainability Challenges for CSE Software 36

problems in CSE projects emerging from differences in priorities and values ascribed to
software development show that making the stakeholders aware of the reasons for these
issues can help resolve them.

From this kind of research it’s clear that understanding social issues is important and
studying the whole ecosystem rather than only focusing on the technical side of CSE is
needed. Such studies may involve looking into various resources related to software devel­
opment and its lifecycle. For example, the Agile Manifesto (http://www.agilemanifesto.
org) is really a social document. Furthermore, a number of artifacts (including software)
can be viewed and studied as social documents that tell a story about the authors (project,
process) and the purpose for which they were created.

The social science community has developed methodologies and approaches that can be
applied to effectively research these issues. Bringing social scientists who are aware of these
methodologies and approaches into CSE work can help researchers and other stakeholders
work together better and do better work. Eventually this leads to better (more robust, more
maintainable, better fitting user needs, etc.) software in CSE.

Social scientists can make contributions by studying the differences between the devel­
opers, the domain scientists, and the general population. For example, the approaches
and methodologies used for testing by professional software developers (with background in
generic, rather than domain-specific software development) and domain scientists developing
software can vary significantly. There is a rationale behind both approaches and understand­
ing it rather than simply judging it can improve communication and exchange of knowledge
in the area. Social scientists can help us understand how to achieve it and implement it.

While many social scientists have studied
the general area of SWE, the lessons from
this work are not well known in the gen­
eral software development community or the
narrower CSE software development com­
munity. In addition, it would be beneficial to
understand what the differences are between
CSE vs the broader SWE, some of which are
technical but many of which are social. SWE
can be understood as a broad set of (generic)
guidelines, methodologies, tools and their
applications necessary to build robust and
maintainable software. CSE covers a range
of scientific domains strongly grounded in
computational background and typically re­
quiring at least some software development
for advancing research. Studying the differ­
ence between the two spurs questions like,
Which methodologies, tools, etc. work best
in each area (SWE vs CSE)? What adapta­
tions of SWE tools to CSE are working and
why? What social lessons from SWE apply
to CSE and what needs to be changed?

Understanding and influencing
group norms is key to improving
software teams. Software develop-
ment is often a team activity, and
understanding the social aspects of
how teams work best is important.
Expected behaviors are important,
such as “making sure teams had
clear goals and creating a culture
of dependability.” But the most
important norm is psychologi-
cal safety, “a shared belief held
by members of a team that the
team is safe for interpersonal risk
taking.”

Productivity and Sustainability Challenges for CSE Software 37

http://www.agilemanifesto.org
http://www.agilemanifesto.org

Understanding and influencing group norms is key to improving software teams. Software
development is often a team activity, and understanding the social aspects of how teams work
best is important to today’s biggest companies, as Charles Duhigg wrote in The New York
Times, “In Silicon Valley, software engineers are encouraged to work together, in part because
studies show that groups tend to innovate faster, see mistakes more quickly and find better
solutions to problems. Studies also show that people working in teams tend to achieve better
results and report higher job satisfaction. Within companies and conglomerates, as well as
in government agencies and schools, teams are now the fundamental unit of organization. If
a company wants to outstrip its competitors, it needs to influence not only how people work
but also how they work together.” [43]

Duhigg further described how Google, believing that better teams would be more pro­
ductive, studied how to build better teams, “The company’s top executives long believed
that building the best teams meant combining the best people. [But] after looking at over
a hundred groups for more than a year, ... researchers concluded that understanding and
influencing group norms were the keys to improving Google’s teams.” [43]

They found that some expected behaviors were important, such as “making sure teams
had clear goals and creating a culture of dependability.” [43] But they found that the most
important norm was psychological safety, “a shared belief held by members of a team that
the team is safe for interpersonal risk taking.” [45]

7.1 CSE software is an ecosystem

Software development constitutes an ecosystem of interacting people and projects, particu­
larly in CSE. This overall ecosystem has no overarching management structure. However,
many individual pro jects do have specific developer roles of integrator, reviewer, and tester.
While this may be informal in small projects, there is a somewhat standard management
framework and set of practices that are often followed in a CSE software development project,
since many people are members of more than one pro ject, and practices that work well can
be informally communicated between people and thus across projects. However, there is
a need to more formally understand how communities act and interact [35] as well as to
identify what makes communities successful [80].

Another way of saying this is that CSE software is built to solve problems at a variety
of physical and temporal scales, across a variety of domains, and across a range of hardware
types. Even for solving simple CSE problems, multiple elements of software interact either
through software dependencies or software reuse. For more complex problems, multiple
elements of CSE software are needed to work across scales, domains, and hardware systems.

One example of this is changes in a commonly used library. The library developers
(producers) may want to concentrate their development effort on a new version, but may
face resistance if there is a need for changes in user (consumer) applications, such as an API
or dependency change, for example, moving from Python 2 to Python 3. The activities of
the producers and consumers need to be clearly communicated and, ideally, they should also
be coordinated.

More generally, different groups or people in different roles within the same group can
have differing understandings of data, metadata, and coding structures. These differing
understandings, if not resolved, can create what Edwards et al. [46] call “friction,” and this

Productivity and Sustainability Challenges for CSE Software 38

friction can hinder interdisciplinary activities.
Today, the coordination of activities and the resolution of differing understandings across

the CSE ecosystem is mostly done in an ad hoc manner, though there are both bottom-up
exceptions where communities come together at conferences and through virtual organiza­
tions for the purpose of coordination, and top-down exceptions where funding agencies or
companies coordinate development of software with the goals of solving specific problems or
classes of problems. We need to understand how to do this more systematically to build an
overall ecosystem that’s accessible to domain scientists and sustainable. Social sciences can
help with this.

7.2 CSE software development is a set of social communities

CSE software development involves groups. Many single pro jects are developed by more
than one person, and CSE software as an larger ecosystem involves multiple development
teams. Thus social interactions and practices of these groups and communities are important
to understand and improve.

7.2.1 Team dynamics and culture

In the context of collaboration and team management, culture is understood as a set of
norms, rules, practices, shared priorities, and goals. Each working environment has its own
culture. In generic software development (as opposed to CSE), the culture is such that
the full focus and priority is given to the software. For enterprise software, the culture is
influenced by the size of the team and the pressures around meeting customer deadlines and
shipping the product.

In CSE software development, the culture influencing the process and the product is
determined by a set of characteristics that are significantly different from that of a larger
software enterprise. Typically CSE software is developed by the small team of a faculty PI
(or two) and a relatively steady stream of grad students and postdocs who contribute to
the code. CSE certainly has large code efforts, but there are hundreds of these small teams.
Understanding the social dynamics and culture of these teams is important.

CSE codebases tend to live a very long time, even as they are regularly modified to
prepare for the next experiment. The tension between long-lived codes and the flexibility
and speed required by computational research to produce results can mean that sustainability
investments in the code are compromised, even though a team could be more productive in
the long run if it spent time on sustainability. Social sciences could be helpful in studying
the reward system in CSE software efforts and help the community build incentives that
encourage better productivity and sustainability.

7.2.2 Individual and intra-team social skills

Formal efforts to teach social skills, such as classes on social styles, can help people under­
stand each other’s background, motivations, and goals, and help them better work together.
Communication can be thus improved, which leads to better collaboration. We want to
reduce social friction but retain the desired intellectual friction, to allow people to better

Productivity and Sustainability Challenges for CSE Software 39

work together while still considering many possible ideas and implementations. By creating
an inclusive environment we can increase diversity. And having a better understanding of
the motivations and goals of the team members can help overcome resistance to change.

At both the individual and team levels (see Figure 6 in [35]), better social skills help
in listening and in recognizing the knowledge of experts, which improves goal orientation
creating a safe environment in which to contribute. These skills empower team members
and the community at-large to make significant contributions and to evangelize broader
adoption. Teams become better functioning, with better decision making, stronger and
more effective leadership, improved coordination and collaboration, and better long-term
knowledge management.

In particular, as software projects get larger it’s increasingly likely that the teams will
include software professionals in addition to scientists who have software development skills.
These software professionals will often have more experience with general technical and
social methodologies and social lessons because they recognize that there is more to software
development than just writing code.

CSE teams, particularly large ones, have the tendency to be highly diverse in terms of
the disciplinary communities involved within them. It has been shown that individuals have
a very hard time talking about technical ideas in a manner that is understandable to people
who come from different domains of expertise [10, 24, 27, 28, 41]. Understanding how to
effectively construct a shared language to negotiate the direction of the code (between the
developers and the users) is likely to be a central component in CSE success.

7.2.3 Individual response to community culture

If developers are rewarded for others using or modifying their code, it will change the behavior
in how they work with others and how they share their code; just making it open source is not
enough. However, it should be noted that in academia and even in many labs, published peer
reviewed papers are the primary metric for success, while software artifacts developed are
seen as by-products. This change in perspective will not happen unless the social behavior
of management teams changes to incentivize software development in CSE by rewarding
researchers for contributing to software development.

7.2.4 Inter-team communities and practices

Code is developed within a particular context, which is created by people and culture. It is
thus important to understand and recognize the (social) context when studying the process
and code. This can be done effectively by social scientists. To make a pro ject sustainable, we
need the people who work on it to continue to want to do so, need to grow community, and
make it easy and desirable for people to join and contribute. Joseph Porcelli’s (GovDelivery)
model of motivations (for people) and friction (for pro jects) is related: his principle is that
when the motivations outweigh the frictions, people contribute to the projects, and successful
community project managers work at both increasing the motivations and reducing the
frictions.

Productivity and Sustainability Challenges for CSE Software 40

7.2.5 The role of tools

Development environments can enhance collaboration and coordination. For example, “so­
cial coding” sites like GitHub have become wildly popular and successful perhaps because
of the transparency of activities and communications these sites afford, which allows for
successful self-coordination [36]. A surprising amount of improvement can be accomplished
with minimal interpersonal interdependencies [65]. It should be noted that software devel­
opment within the scientific community increasingly happens remotely (fewer face-to-face
interactions), including the use of text, video, voice, and other collaboration tools to manage
distributed teams.

7.3 Social sciences roadmap

The CSE community should put effort into examining sociotechnical aspects in two parallel
streams:

1. Within ecosystem collaborations
2. With regards to individuals and team interactions

Key social relationships need to be understood in the context of the technical dependen­
cies they help manage. For example, applications that use particular frameworks place the
developers of those applications and frameworks in a producer/consumer relationship that
requires specific kinds of communication and accommodation. Managing these relationships
is quite important, since success on the social side enables sharing of resources (such as
libraries, frameworks, and other technical and social contributions by the user community),
greatly enhancing productivity. Note that ideally these relationship could transition from the
producer/consumer model to become collaborations, where the consumers become contribu­
tors in what were formerly the producers’ products, by documenting, fixing bugs, supporting,
etc.

This work should comprise the following steps:

•	 Identifying the various kinds of technical dependencies in CSE software that is developed
by different groups

•	 Describing what kinds of social interactions, communication channels, etc., are needed to
manage these relationships

•	 Identifying common needs that could be met by enlarging pools of shared resources
•	 Studying, identifying, and recommending tools to support collaboration and communities
of practice

•	 Defining how to build communities around shared resources to enhance and maintain
them.

We need to better understand and define/structure the role of social scientists in software
(CSE) projects. A challenge that may possibly occur when introducing social scientists into
CSE environments is that if the social scientists aren’t respected by the other members of
the CSE teams, they can’t contribute effectively. It should be noted that engaging social
scientists can be beneficial for both parties: social researchers and the groups studied by
them. We need to build, document, and publicize arguments and evidence that support the
inclusion of social scientists.

Productivity and Sustainability Challenges for CSE Software 41

Problems in science, technology, and software are very interesting to social scientists and
provide them with a lot of valuable research material and data. If CSE groups are resistant
to having social scientists around, it perhaps would be possible to emphasize the fact that
social scientists are there to do their research and not to solve potential problems. It is likely
that over time the social scientists will develop understanding, which will indeed be very
useful.

We also need to understand and define when it would be better to engage a social science
researcher and when it would be more appropriate to include a professional social scientist,
for example, a process consultant, who can advise on pro ject organization, management, and
planning. It is important to note that while social science is likely quite helpful in under­
standing teams and planning interventions, understanding teams and planning interventions
is not necessarily (and not always) social science research. The CSE community and social
science professionals can work together in mutually beneficial ways. The CSE community
would benefit from practical, concrete advice and professional social scientists could further
their careers by focusing on CSE teams.

All the steps listed above will contribute to addressing a challenge related to the fact
that some of the aspects of improving CSE though social science studies and research are
difficult to measure. For example, there is no consent as to how programmer’s productivity
can be measured. In fact, as in many cases of researching human interaction, it is possible
to make approximations and include a number of factors, but we need to accept that many
outcomes and solutions will be very much context dependent. We may need to plan separate
steps to address this issue.

7.4 Possible outcomes

There are at least two possible outcomes from applying social sciences to CSE systems. The
first is knowledge and better understanding of the context, the culture, the priorities and
practices. In particular, we seek:

1. Better understanding of the human activity that is CSE software development
2. Models that describe how CSE software teams interact and that can be used to reason

about how CSE software efforts can be more productivity and sustainable

Second, we want to apply this knowledge. In particular, we would like to:

1. Propose	 strategies for making CSE software teams more aware of the progress in the
broader SWE community

2. Propose strategies for naturally increasing the desire to know more about better SWE in
the CSE community

The latter could be done through improved training for both professional and non­
professional developers in best practices for software development and digital data skills,
using the Software and Data Carpentry activities.

Finally, it is important to show results of the change and the impact that we are making.
The challenge is to collect sufficient and convincing evidence, in part by developing metrics
to gauge the success of applying the gained knowledge in practice. For instance, we could
measure commits by external contributors to CSE projects, the number of issues/tickets filed

Productivity and Sustainability Challenges for CSE Software 42

by users and answers provided by the developers. Having more documentation, better test
coverage, and deployment automation is another indicator as well as propagation of improved
workflows which include pull requests, git-flow and release staging (dev, alpha, beta, prod).
Increased use of external tools, e.g. continuous integration (travis, snap, etc.), static analysis
(codeclimate), documentation generation (readthedocs), and package repositories (docker
hub, vagrant cloud, pypi) also allows to measure the impact. Another example of the metrics
is related more to social aspects such as increased interaction through local and international
meetups, conferences, and BOFs as well as local and international forums. Finally there are
installation counts: science-as-a-service sites, behind the firewall installs, etc.

8	 Workforce Needs for Sustainable Software for Sci­
ences

The ability of any human activity to sustain
itself depends on developing and maintain­
ing a process to train a workforce capable of
supporting that activity. The relevant skills
that are required need careful specification.
For sustainable CSE software, the entry level
is the skillset of Computational Literacy, de­
fined as the ability to harness the power of
computing by both the composition of rele­
vant problems into forms amenable to com­
putation and the comprehension of the com­
puted results (including error factors, limi­
tations, etc.). Further, Computational Pro­
ficiency is defined as the additional ability to employ computational assets as a strategic
asset, encompassing an understanding of high performance hardware, systems modeling and
integration, model verification, validation and uncertainty quantification, data analysis and
synthesis, scalable software architectures and algorithms, and communicating through dig­
ital media. These skills are essential for data and model driven scientific discovery and
engineering innovation.2

“For America’s true competitive-
ness rests in the efficiency with
which the nation reallocates pro-
ductive resources, including the
adaptability of its workforce.”
– Work, Council of Competitive-
ness, 2016

The practical embodiment of these skills is software tools, the development of which is
“as important to modern scientific research as telescopes and test tubes” [112]. Software
transcends these traditional tools of science in that it can be both the tool by which the
science is done and also a reusable and self-contained means of dissemination. However, the
workforce that creates this vital infrastructure comprises largely of “self-taught” scientists.
While there are some ad hoc attempts at providing training and characterizing the needed
skill, [128] professional high quality training and education resources are few. A survey
of physics doctorates and post-doctoral fellows subsequently employed in the public sector

2While the notion of “computational thinking” advocated by J. Wing and others (e.g.
http://www.cs4fn.org/computationalthinking) has some overlaps with these ideas, the focus here is on a
set of core professional skills rather than on pedagogy and ontology.

Productivity and Sustainability Challenges for CSE Software 43

http://www.cs4fn.org/computationalthinking

indicates that more than three quarters of them list programming and modeling as core skills
in their current employment [5].

It is clear that scientific software is a critical part of the infrastructure for science whether
it facilitates the discovery of gravitational waves or new materials for energy storage. It
follows then that the development of a well-trained and professional talent base of workers
with skills in developing this software is likely to have a large impact on the infrastructure
that enables science. This workforce can dramatically enhance both the quality of discovery
science and also provide competitive advantage to innovation driven U.S. industry.

In this chapter, we will outline the many opportunities and challenges in developing a
workforce capable of creating and sustaining the scientific software infrastructure needed for
discovery and innovation.

8.1 Scale and scope of problem

There appears to be only sparse quantitative data on actual need of personnel required to
develop and sustain the software infrastructure needed for discovery science, defense and
security related research, and industrial innovation infrastructure. The reasons for this are
several but the lack of data is compounded due to ad hoc development processes and the lack
of formal planning and monitoring of such work in a manner that has been more common
in commercial software development. There exists plenty of anecdotal data on a deficit of
skilled personnel with the required combination of disciplinary knowledge and software skills.

We attempt to collate some of the readily available data but highlight that most data we
cite is of much coarser granularity and usually gathered with different goals.

(a) Bureau of Labor Statistics (BLS) data: The employment category of “Software Develop­
ers, Applications” is listed as having 686,470 employed at an average salary of $99,530
[29]. A cross-cut of this with the “Science and research development services” industry
sector reveals that 14,980 of these at an average salary of $103,410 are possibly engaged in
developing software for the sciences. An additional 4,570 are listed as computer program­
mers engaged in this industry sector. Further confounding any inference is the listing of
570 mathematicians (average salary $119,830), 4,100 statisticians (average salary $95,140)
who are likely part-time or full time contributors. A significant fraction of a long list of
science and engineering professionals (physics, chemistry, engineering) employed in this
industry are also likely engaged in software development. The BLS goes on to project
that the employment of application software developers is likely “to grow 17 percent from
2014 to 2024, much faster than the average for all occupations.” [29] The training pipeline
for producing such professionals is unlikely to be able to match this need if this indeed is
the true demand growth. Moreover, the slow response timelines of much of the science re­
search establishment that is government funded (through grants and contract mechanisms
that cannot pivot and change rapidly) points to an impending crisis. As a counterpoint,
one must also note that the category of “Computer Programmer” is projected for an 8
percent decline due to increased offshore outsourcing, an option that is impractical for
many of these needs.

(b) Taulbee Report from CRA: The annual Taulbee report [120] from the Computing Research
Association (CRA) points to the strong sustained growth of undergraduate enrollment

Productivity and Sustainability Challenges for CSE Software 44

while doctoral and masters production rates are relatively flat. The doctoral degrees
(the primary source of a large part of the talent pool from which computational scien­
tists are recruited) awarded actually declined by 4.4 percent over 2013 in 2014 but this
was offset by increased enrollment of 3.6 percent. The undergraduate degrees awarded
went up 12 percent while the enrollment went up 17.4 percent. Such strong enrollment
growth in undergraduate computer science increases the potential talent pool. Data from
the American Institute of Physics also indicates a healthy growth in physics BS degrees
(many with minors in mathematics) averaging over 5 percent per year over the last 15
years [6]. However, specific strategies are needed to attract sufficient numbers of these
graduates into the computational sciences and scientific software. Existing programs like
the Computational Sciences Graduate Fellowship (CSGF) [81] are successful, but the scale
of the need is much larger than the small supply from these.

There is a need for additional data gathering efforts on specific requirements. Such
efforts should focus on information from hiring and operational managers at the different
national laboratories, industry research agencies, independent vendors of major science tools,
and Department of Defense facilities. Principal investigators of ma jor academic research
groups that develop and provide software tools also need to be surveyed on these aspects. A
forthcoming study by the Council of Competitiveness on workforce readiness [34] provides
some data on the level of computational literacy and proficiency.

The upcoming need for major restructuring of most software tools for science to take
advantage of two computing transformations: the ubiquitous availability and use of “Big
Data”, and the complex architecture of the next generation of high-end computing and data
analysis hardware will make the workforce needs more acute. It is necessary to examine
the anticipated complexity of scientific software for this environment, where the algorith­
mic (complex computational schemes, data management, and computing for exascale) and
software infrastructure are both in flux.

8.2 Gaps in current training processes

Two hypotheses have been proposed for the current sources and training modalities for
this workforce. The first one proposes that most of the current workforce has not been
formally trained in software but has migrated from the domain sciences. The second one
postulates that most computer science majors are not interested in computational science
and therefore, traditional computer science curricula will not produce graduates capable of
developing/supporting CSE applications. Anecdotal evidence supports both hypotheses. A
general observation made by several hiring managers is that in the current training processes
there is a 2-year gap between hiring and a productive engineer. These hypotheses need
verification and validation with specific data where possible.

A careful delineation of the skills needed for the next generation of CSE developers
is needed [6, 40, 112]. The SIAM CSE (draft) report[108] emphasizes cross-disciplinary
graduate program learning outcomes for CSE. Clearly these comprise the traditional skills
of programming and software engineering, modeling, applied mathematics, and numerical
analysis, but we need to add other skills to this mix. The increasing role of data-driven sci­
ences indicates that we need to add data sciences to this mix. Software project management

Productivity and Sustainability Challenges for CSE Software 45

is increasingly essential for large scale and distributed development by collaborating teams.
While higher learning programs can improve the supply of entry-level technical skills, in­

dustry adoption of advanced computational methods will stall until executive-level decision-
makers are also computationally literate. Thus, supplemental training programs (perhaps
broadly localized through community colleges) should also be assessed for retraining the
existing workforce and aim not only at technical positions but also at leadership.

8.3 Innovative and emerging solutions

These workforce needs are being addressed to a certain extent by “multiscale” training re­
sponses. These include focused training like those in the software and data carpentry activi­
ties [127]. Others like “Google Summer of Code”, and the XSEDE and Argonne Leadership
Computing Facility annual workshops also take direct aim at this problem. However, much
more needs to be done. Curriculum delivery platforms like MOOCs are potentially trans-
formative here, but serious attempts are not yet in place (see for e.g. [124] on programming
linear algebra applications).

A significant positive development in contributing to closing this gap is the number of
new graduate programs in computational science, and more recently in data science, that
have begun in the last two decades. Graduates from these programs are cross-trained in
domain and computational/data sciences and are usually capable of and appreciative of
the need for developing good software tools. The 2012 survey [40] of 59 such programs
shows an average enrollment of 26.7 students in MS programs and 21.7 in PhD programs,
which is a reasonable, if not abundant, supply of talent. These graduates are as defined
computationally proficient and appear to be highly sought after by national laboratories,
academia, and private industry.

8.4 Role of universities, industry and funding agencies roadmap

Once the dimensions of the problem have been established, what actions can different
stakeholders—universities, industry, and funding agencies—take? Let us first consider the
role of funding agencies. While mission agencies and laboratories are among the primary
beneficiaries of this workforce, they are not traditionally the primary agencies investing in
workforce development. The NSF traditionally bears some of that role, but its efforts are
diffuse and more focused on developing a general STEM (science, technology, engineering
and math) workforce for academic research and industry needs. Will it serve the needs of
other agencies to create centers focused on sustainable software development at universities
who have a primary mandate to educate? The three-pronged scientific software elements,
scientific software integration and software institutes program started by NSF has seeded
a number of efforts in the last few years that provide or develop a set of robust tools and,
more importantly, as a byproduct, train a set of researchers/professionals that can support
some of this workforce development need. However, for this to really have an impact, this
role needs to be formalized and sustained.

The traditional training venues of universities and academics are not currently incen­
tivized to practice and hence “teach” software skills, since there is meager reward in the
academic system for producing high-quality and reusable software tools. Furthermore, there

Productivity and Sustainability Challenges for CSE Software 46

exist no metrics or common understanding of how such contributions may be valued. A
career path for any faculty who do provide such training has traditionally been unclear. Re­
cent CAREER awards, notably from the NSF Advanced Computing Infrastructure Division,
support the intent of these academics to develop reusable and robust software for the sciences
and increase the acceptability of such activity in academic circles. The importance of this
training and this career path needs to be further reinforced and, to really have an impact,
these awards need to be scaled. As of this writing, only a very small fraction of young inves­
tigator awards in computational or data science come with an incentive to develop robust
and sustainable software. A significant scale-up of these young investigator awards in ACI
and incentivizing all computational and data science awards to produce robust, reusable and
sustainable software tools will have the impact of both greatly increasing the workforce and
the long term creation of a digital infrastructure for science.

To stimulate focus on such skills, perhaps academic institution ranking agencies such as
Barron’s or U.S. News and World Report might be guided by a national call and clarification
of skillsets to introduce a category assessing and ranking universities on the preparedness of
graduates for job needs in computational literacy. The listing by most PhDs of these skills as
of use and value in their current jobs provides graduate curriculum developers incentive to do
so. Accreditation processes provide another important venue for incentivizing the provision
of such training. ABET, the accreditation organization for most undergraduate engineering
and computing related programs in the U.S. uses an accreditation process that ensures that
universities are taking input from employers and training their graduates in the skills that
are required in the workplace [1]. Recent ABET focus on workplace skills can be logically
expanded to include robust software development. Systematic engagement with the ABET
and other accreditation and ranking agencies to highlight the importance of these skills is
necessary. However, graduate education does not provide such a standards based approach
since each program is highly individualized and driven by tradition.

9 CSE Software in Industry & Manufacturing

Advances in computing technology propelling affordable collection, storage and analysis
of data at massive scale are transforming industry from how products are designed and
manufactured to the connectivity with customers. The data-driven enterprise will seek to
capitalize on increasingly sophisticated software in both the operation of businesses and
the creation of competitive goods, such as employing machine intelligence as a collaborator
to tame voluminous data or embedding sensing and connectivity in products themselves.
Ultimately, however, value vs. cost drives adoption within the commercial enterprise.

It will become competitively necessary for industrial/manufacturing3 companies to em­
ploy a variety of CSE software across the lifecycle of their products and services, most heavily
leveraging numerical (digital) methods where economically advantageous over traditional,
empirical (physical) methods. Simulation, modeling and analytics will drive competitive
and innovative designs while subsequently reducing time, costs and risks in supply chain

3While commercial users of CSE software includes manufacturing entities as found in finance, insurance,
education, information services, entertainment, etc., we focus the industry & manufacturing section on
enterprises producing commercial and consumer physical goods and related services.

Productivity and Sustainability Challenges for CSE Software 47

logistics, manufacturing, assembly, packaging, distribution, operation, maintenance and ser­
vicing. Our discussion will reference M&S as the predominant application of CSE software
under consideration.

9.1	 Opportunities for CSE software to advance industry & man­
ufacturing

Many of the opportunities described in this section rely upon overcoming significant chal­
lenges addressed more directly in the section to follow. But in preface, three factors merit
emphasis as typical prerequisites for CSE software adoption by commercial in­
dustry & manufacturing:

1.	 Legal clearance (including intellectual property protection, indemnity, and licensing terms)
2.	 Validation (more so than scientific studies, products have liability consequences)
3.	 Affordable professional support (responsiveness to business needs but also not prohibitively

expensive in context of use)

9.1.1 Financial impact

It should go without saying that success in industry & manufacturing requires careful at­
tention to costs and returns. A Department of Energy-commissioned study4 of the return
on investment (ROI) examined macroeconomic and innovation impact of HPC-driven CSE,
but to date an industry-acceptable microeconomic ROI has proven challenging for industrial
advocates to develop. This is because by strict financial accounting definition, ROI requires
the return be exclusively attributable to the investment in the M&S activities themselves.
But by its very nature, modeling, simulation and analytics are methods employed by more
broadly-scoped teams, tasked with product improvement, manufacturing, servicing or new
product development. While M&S does not itself generate revenue as such, companies at
least qualitatively value the benefits listed in Table 2 and, as commercial enterprises, seek a
quantifiable and accepted measure of that value to justify and size further investment in the
people, software, and hardware necessary for its practice.

There is thus an opportunity to explore how public policies or standards may encourage
adoption of CSE software in industry & manufacturing through clarification of financial im­
pact. For example, Proctor & Gamble adopted a practice of calculating a financial impact of
returns divided by costs as follows: returns were counted if M&S was necessary for the finan­
cial gain (in new product launch, cost savings, productivity improvement, capital avoidance
for example, using an existing asset to generate new revenue) and all costs (including M&S
people, software, hardware and external services) are included.

9.1.2 Engines of productivity

The most straightforward application of M&S is in modeling a product or process that
already exists, but then leveraging computational horsepower toward super-human outcomes.

4Economic Model For a Return on Investment Analysis of United States Government High Performance
Computing (HPC) Research and Development (R&D) Investment, IDC Research, (Sep, 2013)

Productivity and Sustainability Challenges for CSE Software 48

Engines of Productivity Instruments for Insight

Increase Return on labor
Profit margins
Supply chain & distribution efficiency
Design exploration
Agility to seize opportunities

Product diversity & novelty
Yields & production capacity
Data-driven decisions
Trade-off analysis
Perception of previously unseen

Decrease Costs of overhead & rework
Time to market
Equipment downtime
Response time to fix problems

Operational exposure
Uncertainty & risk
Contradictions
Noise obscuring main effect

Methods
of
Practice

Automation of repetitive tasks/tests
Faster than real time simulation or anal­
ysis
Digitally replicate studied resources
Concurrent studies on parallel system

Model unmeasurable effects
Isolate effects in complex interac­
tions
Observe without physical interfer­
ence
“Big Data” analysis and synthesis

Table 2: Potential CSE software modeling and simulation benefits to industry and manufac­
turing

Unfortunately, the productivity results stemming from such analyses are sometimes attached
to significant prior investments, and the M&S impact gets an honorable mention but is not
espoused as “critical.”

Financial impact becomes more clear when these capabilities are engaged earlier in a
commercial process (before a prototype, before a process change is implemented) to perform
virtual trial and error of options. This yields “innovation productivity” by avoiding capital
expenses and investment of time in physical tests, prototypes, clinical trials, etc. While
these will likely be needed at a later stage, the confidence in the result of said tests passing
will be much improved. The downside of virtual trial & error is you have to already have
thought of the idea to test it, and it is not advantageous compared to traditional methods if
computational methods cost more time and/or money. So the very productivity of the M&S
process plays into the equation.

At Procter & Gamble, this “Virtual Trial & Error” is the bulk of our Financial
Impact. A typical example can be in something as simple as a plastic bottle.
The plastic bottle needs to meet certain strength requirements for manufactur­
ing, shipping, and home use. When you make billions of them, you cannot
“overdesign” for strength, but if they fall off the shelf “cleanup on aisle 7” can be
something a grocer or a home owner does not want, especially if they feel that
you make the product “weak”. You can take 12 weeks and build $50,000 molds

Productivity and Sustainability Challenges for CSE Software 49

for every iteration, or you can do all the testing virtually. Every year, P&G tests
over 100,000 virtual tests on different containers. Some you see everyday in the
store and some you will never see because they would not work in the real world.
– Tom Lange (P&G - Retired)

9.1.3 Instruments for insight

The ultimate way M&S can impact a business is by enabling discovery. Analysis-led discovery
is often associated with products, formulas, manufacturing systems, supply configurations
that you would have never thought to test. M&S can enable exploration of a high dimensional
search space to seek an optimization or configuration you would not likely have considered.
As many products and processes push the cutting edge of technology, the ability of tradi­
tional methods to observe and measure critical effects has reached its limit. From machine
perception augmenting our human senses—filtering complexity or making vast data tractable
by focusing attention to simply measuring physics at scales of time or ranges (e.g., tempera­
ture) infeasible through empirical methods, M&S become essential “instruments for insight”.
Unlike productivity impacts, where credit must be shared—these synthetic discoveries can
often be wholly attributed to computational modeling.

9.1.4 Software ecosystem synergy

The discussion throughout this report clearly illustrates many aspects of how the government
will hold a position of leadership in CSE Software. The learnings, discoveries, developments
and data flourishing from that advancement likewise will endow industry with the fruits of
those capabilities and experts’ knowledge, providing critical software components such as:

• application development tools (e.g., compilers, profilers, frameworks)
• execution environments (e.g., operating systems, kernels, containers)
• component implementations (e.g., microservices, libraries, algorithms & data structures)
• secure elastic deployment infrastructure (e.g., hardened cloud, cyber security protocols)
• “gold standard” reference data (e.g., codified physical test data repositories for VVUQ)
• ultra-high fidelity reference models at leadership computing facilities (e.g., human liver)

These are not even limited to end-users of CSE Software, as commercial software vendors
can leverage such assets to modernize their own codes—improving scalability, performance,
interoperability and reliability while reducing associated costs and risks. In fact, an addi­
tional topic for further consideration should be acceptable pathways to commercialization
and professional support of these codes themselves to better secure their sustainability.

9.1.5 Software scalability competitiveness

The topics of hardware access and software costs will be addressed in more detail as chal­
lenges in the following section. Considering opportunities, however, one market dynamic
of commercial software that merits examination is the reluctance of established software
vendors to keep pace with advances in the underlying hardware or application of novel al­
gorithms enabled by emerging architectures. Industry’s reliance upon commercial codes is
well-established and defines that very market. Many commercial software vendors of CSE

Productivity and Sustainability Challenges for CSE Software 50

codes have been consolidated under larger entities over the past decade and in doing so are
compelled by market economics to avoid risks and costs associated with porting to cutting
edge hardware or serving the niche of lead users demanding extreme scalability.

Additionally, some commercial licenses expressly forbid publication of performance bench­
marking or even in some cases the benchmarking itself. Such protections impede due diligence
in fairly evaluating the merits of alternatives, and would hamper the prospect for periodically
publishing competitive capability assessments by a neutral party.

Therein lies an opportunity to challenge these commercial vendors in more aggressively
adopting the components of the software ecosystem described previously. While the Top500.org’s
ranking of hardware has been the source of controversy5, it has undeniably motivated com­
mercial behaviors. What sort of scalability ranking of various representative problems for
CSE software (e.g., fluid-solid interaction, fracture mechanics, turbulence, etc.) might be
devised to demonstrate comparative capabilities in handling extreme problems? Such a list
published with the periodicity of Top500 would both advise end-users seeking to expand the
scale of their problems and offer software vendors a potential tool for marketing improve­
ments to their solver’s capabilities (and thus justify the investment to do so). How might
such an evaluation be governed? Hardware vendors would also participate insofar as they
could provide the underlying system access to prove out the scalability and performance for
the target benchmarks.

The compelling aspects of the cloud computing business model that has evolved from
on-demand hosted compute infrastructures include reduced costs due to multi-tenant driven
higher utilization, simplification of IT operations, global accessibility and of course flex­
ible capacity leveraging host elasticity. While many high-end industry & manufacturing
companies will sensibly host internal resources to match reliably predictable internal de­
mand, enable performance-sensitive or confidential computations, etc., all will likely employ
a non-trivial cloud footprint. The advantages of cloud computing grow larger as aggregate
corporate computational workload decreases—so to reach small to medium-sized commercial
enterprises, CSE software should be functional (support cloud deployment and on-demand
licensing) and execute efficiently on modest problems in an elastic cloud infrastructure.

9.1.6 A new paradigm for regulation

The most stark public-private opportunity for further investigation lies in the formal in­
tersection of government and private industry: regulation, standardization and certification.
Social media-driven transparency and expectation of corporate citizenship and accountabil­
ity now align private enterprise with the regulatory agencies’ goals of product safety, efficacy
and security. Industry and its regulators6 could elevate the state of the art in achieving these
common goals, leveraging CSE software and related technology to both improve the veracity
of certification and reducing the burden in cost and time for both parties. For example, to
what extent do advances in high fidelity modeling and analytics, pervasive networked sen­
sors and methodologies for verification, validation and uncertainty quantification (VVUQ)7

5Kramer, William, NCSA blog: http://www.ncsa.illinois.edu/news/stories/TOP500problem/
6FDA, FAA, NHTSA, EPA, etc.
7Note April, 2013 symposium by The National Academies: “Validation, Verification, and Uncertainty

Quantification in Regulation” as well as ASME established (March, 2016) Vol. 1 Issue 1 “Journal of Verifi-

Productivity and Sustainability Challenges for CSE Software 51

http://www.ncsa.illinois.edu/news/stories/TOP500problem/

enable virtualized certification methodologies? Correspondingly, how might more standard­
ized guidelines8 for CSE software employed in critical infrastructure and other public systems
improve safety, interoperability, and maintainability—similarly reducing costs and risks to
both private and public interests?

This opportunity represents a potential pattern for both productivity and sustainability.
Both the regulator and the regulated party have the potential to reduce risks and costs
associated with regulatory process and compliance. Commercial entities should be able
to justify payment toward sustainable software, reference data and oversight when those
costs result in a net financial benefit relative to reporting costs, risk, and time uncertainty
as the regulator-accepted software enables virtualization, automation, transparency, and
predictability.

9.1.7 Grand challenge: Scalable multiscale

Beyond the scaling of solved problems, there is an opportunity to investigate strategies
toward unraveling a prominent barrier problem common to numerous physics-based model­
ing Grand Challenges (biological systems, materials, climate, weather, etc.): performance-
scalable multiscale modeling. Just like the scientific problems mentioned, Industry would
benefit from the ability to efficiently couple computations performed at widely different phe­
nomenological resolutions in pursuit of multi-disciplinary product design. Unifying analyses
of structural, fluid, electromagnetic, thermal, chemical, mechanical, etc. factors results in
higher fidelity simulation of the physical world, which in turn improves understanding and
drives convergence in exploring design options. Parallel hardware/software architectures to
date have made only modest progress in multiscale solutions in niche problem spaces, leaving
an opportunity to develop more general approaches to tame the intractability of integrating
time scales or the tyranny imposed on problems exhibiting obstinately long causal chains.

9.1.8 Stimulate workforce development

All of these opportunities, however, rely upon people with the knowledge, skills, and ex­
perience to leverage the CSE software advances and fully exploit the potential of emerging
computing hardware. In Section 8 we discussed Computational Literacy and Proficiency in
detail. In a 2015 survey commissioned by the Council on Competitiveness9 to understand the
workforce’s level of readiness in developing and employing computational modeling methods,
employers reported requiring “more than one year” of internal (sometimes ad-hoc) training
before reaching the desired knowledge and proficiency from recent university graduates. The
responses additionally indicated “more than one year” investment in re-training experienced
hires and executive decision-makers.

The Council on Competitiveness (March, 2015) publication “NDEMC Final Report:
Modeling, Simulation and Analysis, and High Performance Computing: Force Multiplier
for American Innovation ”10 describes in detail a public-private pilot pro ject enabling small

cation, Validation and Uncertainty Quantification”
8“We Need a Building Code for Building Code”, Carl Landwehr, Communications of the ACM, Vol. 58

No. 2, pp 24-26
9Perceive. Finding the Future through an Exascale Economy, Council on Competitiveness (April, 2016)

10http://www.compete.org/publications/all/2938

Productivity and Sustainability Challenges for CSE Software 52

http://www.compete.org/publications/all/2938

businesses to leverage CSE software on HPC through support and expertise of several large
manufacturers, commercial software vendors, and modeling experts in academia and govern­
ment. The exercise features not only the challenge to extend expertise, but also pragmatics
in accessing hardware facilities and requisite software licensing.

9.2	 Development and use challenges of CSE M&S software by
industry

Results of a study at General Electric referenced in Industrial Applications of High-Performance
Computing11 outline barriers to adoption that characterize the challenges in development
and use of CSE software for industrial users. To start, the economics always must en­
dure scrutiny as decision-makers consider trade-offs and alternative investments—whether
between commercial vendors, open source, in-house development or even returning to tradi­
tional non-digital methods. Factors considered in such a decision include:

•	 Assurance of Rights: Can I use the software on my proprietary data? Will I retain
ownership of the resulting insights? Am I indemnified if the software has infringed on
intellectual property or leads to other liabilities?

•	 Confidence: Can I trust the software’s results? Will those results justify the cost? Can it
overcome internal cultural barriers to change or adoption, including established confidence
in a legacy methodology?

•	 Productivity: How difficult is it to learn to use for the types of problems I wish to solve?
Can I leverage regression data from legacy software or processes? What are the costs in
training, ramp-up time, consulting support? How tedious is it to provide input to the
software? How readily will its output answer the questions we ask?

•	 Flexibility: Can the software input from and output to other software I use (including
transition from software this is replacing)? Can it be used by multiple users? In other
countries? Embedded within a product or service?

•	 Portability: Will the software run efficiently on the targeted hardware (servers/workstations/mobile
devices)? Can I migrate use between alternatives? Can it make use of modern hardware
(accelerators, visualization technology)?

•	 Scalability: Can I run the software on the full hardware system to which I have access?
Can the software compute problems of the size in which I am interested? Is there a
prohibitively scale-penalizing licensing fee for my intended use/relative to the size of my
hardware investments? (See Table 1).

These factors may be in mutual conflict with one another, resulting in reluctant acquiescence
by decision-makers and investigation of further alternatives.

9.2.1 Software licensing terms

Software can be used independent of a product or service or in varying degrees of dependency,
such as: exclusively employed a priori in its design; called as a distinct process; linked at
runtime or embedded within a product or service itself.

11Osseyran, Anwar, Giles, Merle, “Industrial Applications of High-Performance Computing”, CRC Press,
2015, pp. 254-261 (GE Research Industrial Applications’ Journey to Supercomputing)

Productivity and Sustainability Challenges for CSE Software 53

A number of open source licensing models12 exist to provide a legal framework for use of
software. Many licenses have terms that are fairly benign for public and academic use, but
impose problematic constraints on commercial users. One challenge of public-private part­
nering is the inconsistency of license selection and the subsequent complexity of evaluating
and managing numerous subtly different models within the ecosystem.

Further, regulated indus­
tries or commercial entities
conforming to certifications
such as ISO-9000 require for­
mal documentation of pro­
cesses, which could include
origins of decision-supporting
information and workflows em­
bedded within software other­
wise opaque.

Where the software cre­
ated through government agen­
cies or programs is intended
to be shared with industry, an
examination of the impact of
software license choice merits
further investigation, includ­
ing a standardization and sim­
plification strategy.

Sections 6.1.3 and 6.1.4
discuss in depth the economics
of commercial software and
impact of different licensing
choices.

Figure 3: “‘Affordable manufacture’ of the Tide Pod pouch means
doing it FAST, and if there is one thing that is hard to do, it is make
liquids do things faster than they want to (especially non-Newtonian
liquids). So, we did significant amounts of CFD (Computational Fluid
Dynamics) to understand that phenomenon, as well as structural ef­
forts to understand pouch dynamics and strengths.” Tom Lange (Proc­
ter & Gamble, retired)

9.3 CSE impact: Consumer products

Procter & Gamble have received wide publicity for their innovative use of CSE in product
development and enhancement. Tom Lange (retired) has presented many compelling stories
of the positive impact CSE has had over the years. There is much more that can be done to
improve productivity and sustainability challenges of our CSE tools. Even so, successes are
notable, and understandable to non-experts, as seen from the Tide Pod story below.

In 2011, Procter & Gamble’s highly successful Tide detergent brand launched an easy-to­
use per-wash product called “Tide Pods” (see picture). This product faced an engineering
challenge: To put liquid detergent into three separate liquids in a “no leftover” water-
dissolvable film pouch that could be affordably manufactured with parts per million quality.

The engineering challenge was also a product acceptance challenge: one leaky pouch and
the whole package is ruined, one ruined container and the whole shelf set is ruined, and if

12https://en.wikipedia.org/wiki/Comparison_of_free_and_open-source_software_licenses

Productivity and Sustainability Challenges for CSE Software 54

https://en.wikipedia.org/wiki/Comparison_of_free_and_open-source_software_licenses

you create ANY negative consumer experiences, it does not succeed. P&G had been striving
for a successful unit dose product since SALVO (not successful) in the late 1950’s. But over
the last few years, this product form has revolutionized laundry.

10 Summary and Conclusions

Scientific and engi­
neering productivity
can be roughly mea­
sured as the num­
ber of high-quality
results produced over
a space of time by
a particular team.
CSE plays a par­
tial but growing role
in the productivity
equation. It can have
a strong positive im­
pact in all aspects of productivity, but at the same time increases the complexity and required
skill set for a team.

Science and engineering will benefit substantially by
increasing the productivity and sustainability of CSE
efforts. CSE has emerged as such an important ele-
ment in the overall scientific and engineering endeavor
that any substantial improvements in the quality of
our software efforts will have multiple and large im-
pacts on any endeavor where CSE plays a role.

At this point in time, there is strong consensus that the scientific and engineering com­
munity can benefit substantially by increasing the quality of CSE efforts. CSE has emerged
as such an important element in the overall scientific and engineering endeavor that any sub­
stantial improvements in our CSE efforts will have a broad impact on science, engineering,
industry, economics and society. Furthermore, the biggest opportunities for improving CSE
will come from programmer productivity and software sustainability, and lack of progress
will significantly hinder our overall success.

This report of the Computational Science and Engineering Software Sustainability and
Productivity Challenges Workshop lays out the characterization of our challenges, impedi­
ments, and opportunities. We hope that its contents will provide a foundation for progress.

Productivity and Sustainability Challenges for CSE Software 55

References

[1] Accreditation Board for Engineering and Technology.	 Accreditation board for engi­
neering and technology main page. http://www.abet.org. [Accessed: 2016-02-13].

[2] S. Ahalt, B. Berriman, M. Brown, J. Carver, N. Chue Hong, A. Fish, R. Idaszak,
G. Newman, D. Panda, A. Patra, E. G. Puckett, C. Roland, D. Thain, S. Uluagac,
and B. Zhang. Toward a framework for evaluating software success a proposed first
step. In Computational Science & Engineering Software Sustainability and Productivity
Challenges (CSESSP) Workshop, October 15 2015. [Poster] https://www.orau.gov/
csessp2015/posters/Ahalt_Stan.pdf [Accessed: 2016-04-11].

[3] B. Akin, F. Franchetti, and J. C. Hoe. FFTs with near-optimal memory access through
block data layouts: Algorithm, architecture and design automation. Journal of Signal
Processing Systems, pages 1–16, 2015. ISSN 1939-8115. doi:10.1007/s11265-015-1018-0.

[4] M. Alcubierre, G. Allen, C. Bona, D. Fiske, T. Goodale, F. S. Guzman, I. Hawke,
S. H. Hawley, S. Husa, M. Koppitz, C. Lechner, D. Pollney, D. Rideout, M. Salgado,
E. Schnetter, E. Seidel, H. aki Shinkai, D. Shoemaker, B. Szilgyi, R. Takahashi, and
J. Winicour. Towards standard testbeds for numerical relativity. Classical and Quan­
tum Gravity, 21(2):589, 2004. URL http://stacks.iop.org/0264-9381/21/i=2/a=
019.

[5] American Institute of Physics.	 Recent physics doctorates: Skills used and satisfac­
tion with employment. https://www.aip.org/sites/default/files/statistics/
employment/phds-skillsused-p10.pdf, . [Accessed: 2016-04-16].

[6] American Institute of Physics. American institute of physics statistics.	 https://www.
aip.org/sites/default/files/statistics/undergrad/bachdegrees-p-14.pdf, .
[Accessed: 2016-02-13].

[7] Association for Computing Machinery. ACM Result and Artifact Review and Badging.
http://www.acm.org/publications/policies/artifact-review-badging. [Ac­
cessed: 2016-07-01].

[8] J. H. Ausubel.	 The return to nature: How technology liberates the environment.
Breakthrough Journal, (5), Spring 2015. URL http://thebreakthrough.org/index.
php/journal/issue-5/the-return-of-nature.

[9] W. Bangerth and T. Heister. What makes computational open source software libraries
successful? Computational Science & Discovery, 6(1):015010, 2013. doi:10.1088/1749­
4699/6/1/015010.

[10] W. C. Barley. Anticipatory work: How the need to represent knowledge across bound­
aries shapes work practices within them. Organization Science, 26(6):1612–1628, 2015.
doi:10.1287/orsc.2015.1012. URL http://dx.doi.org/10.1287/orsc.2015.1012.

Productivity and Sustainability Challenges for CSE Software 56

http://www.abet.org
https://www.orau.gov/csessp2015/posters/Ahalt_Stan.pdf
https://www.orau.gov/csessp2015/posters/Ahalt_Stan.pdf
http://dx.doi.org/10.1007/s11265-015-1018-0
http://stacks.iop.org/0264-9381/21/i=2/a=019
http://stacks.iop.org/0264-9381/21/i=2/a=019
https://www.aip.org/sites/default/files/statistics/employment/phds-skillsused-p10.pdf
https://www.aip.org/sites/default/files/statistics/employment/phds-skillsused-p10.pdf
https://www.aip.org/sites/default/files/statistics/undergrad/bachdegrees-p-14.pdf
https://www.aip.org/sites/default/files/statistics/undergrad/bachdegrees-p-14.pdf
http://www.acm.org/publications/policies/artifact-review-badging
http://thebreakthrough.org/index.php/journal/issue-5/the-return-of-nature
http://thebreakthrough.org/index.php/journal/issue-5/the-return-of-nature
http://dx.doi.org/10.1088/1749-4699/6/1/015010
http://dx.doi.org/10.1088/1749-4699/6/1/015010
http://dx.doi.org/10.1287/orsc.2015.1012
http://dx.doi.org/10.1287/orsc.2015.1012

[11] R.	 Bartlett. A Roadmap for Sustainable Ecosystems of CSE Software. Technical
report, Oak Ridge National Laboratory, June 26 2015. URL http://web.ornl.gov/

~8vt/CSEEcosystemSustainability_CSESSP2015.pdf.

[12] R. Bartlett, M. Heroux, and J. Willenbring. Estimating the Total Development Cost
of a Linux Distribution. Technical report, SAND2012-0561, SANDIA, February 2012.
URL http://web.ornl.gov/~8vt/TribitsLifecycleModel_v1.0.pdf.

[13] R. A. Bartlett, M. A. Heroux, and J. M. Willenbring. Overview of the TriBITS lifecycle
model: A lean/agile software lifecycle model for research-based computational science
and engineering software. In 8th IEEE International Conference on E-Science (e-
Science 2012), pages 1–8, October 2012. doi:10.1109/eScience.2012.6404448.

[14] V. Basili, A. Trendowicz, M. Kowalczyk, J. Heidrich, C. Seaman, J. Münch, and
D. Rombach. Aligning Organizations Through Measurement: The GQM+Strategies
Approach. The Fraunhofer IESE Series on Software and Systems Engineering. Springer,
2014.

[15] V. R. Basili. Using measurement for quality control and process improvement. In Sec­
ond Annual SEPG Workshop, Software Engineering Institute, Carnegie Mellon Uni­
versity, Pittsburgh, PA, June 21-22 1989.

[16] V. R. Basili and H. D. Rombach. The TAME project: towards improvement-oriented
software environments. IEEE Transactions on Software Engineering, 14(6):758–773,
Jun 1988. ISSN 0098-5589. doi:10.1109/32.6156.

[17] V. R. Basili, J. C. Carver, D. Cruzes, L. M. Hochstein, J. K. Hollingsworth, F. Shull,
and M. V. Zelkowitz. Understanding the high-performance-computing community: A
software engineer’s perspective. IEEE Software, 25(4):29–36, 2008. ISSN 0740-7459.
doi:10.1109/MS.2008.103.

[18] I.	 Baxter. Design maintenance systems. Communications of the ACM, 35(4), April
1992.

[19] I. Baxter. Program analysis methods, 2016. Personal Communication.

[20] I. Baxter and E. Kant. Using domain-specific, abstract parallelism. In I. Foster and
E. Tick, editors, Proceedings of the Workshop on Compilation of (Symbolic) Languages
for Parallel Computers, October 1991.

[21] I.	 Baxter and M. Mehlich. Reverse engineering is reverse forward engineering. In
Working Conference on Reverse Engineering. IEEE, 1997.

[22] I.	 Baxter, A. Yahin, L. Moura, M. SantAnna, , and L. Bier. Clone detection using
abstract syntax trees. In Proceedings of the International Conference on Software
Maintenance. IEEE Press, 1998.

Productivity and Sustainability Challenges for CSE Software 57

http://web.ornl.gov/~8vt/CSEEcosystemSustainability_CSESSP2015.pdf
http://web.ornl.gov/~8vt/CSEEcosystemSustainability_CSESSP2015.pdf
http://web.ornl.gov/~8vt/TribitsLifecycleModel_v1.0.pdf
http://dx.doi.org/10.1109/eScience.2012.6404448
http://dx.doi.org/10.1109/32.6156
http://dx.doi.org/10.1109/MS.2008.103

[23] I. Baxter, C. Pidgeon, and M. Mehlich.	 Program transformations for practical scal­
able software evolution. In Proceedings, 26th International Conference on Software
Engineering. IEEE Computer Society, 2004.

[24] B. A. Bechky. Sharing meaning across occupational communities: The transformation
of understanding on a production floor. Organization Science, 14(3):312–330, 2003.
doi:10.1287/orsc.14.3.312.15162.

[25] B. Boehm. Software Engineering Economics (1st Edition). Prentice Hall, 1981.

[26] B. Boehm.	 Software Engineering Economics. IEEE Transactions on Software Engi­
neering, 10(1):4–21, 1984.

[27] J. S. Brown and P. Duguid. Knowledge and organization: A social-practice perspective.
Organization Science, 12(2):198–213, 2001. doi:10.1287/orsc.12.2.198.10116.

[28] H.	 C. Bruns. Working alone together: Coordination in collaboration across
domains of expertise. Academy of Management Journal, 56(1):62–83, 2013.
doi:10.5465/amj.2010.0756.

[29] Bureau of Labor Statistics. Bureau of Labor Statistics Data.	 http://www.bls.gov/
oes/current/oes151132.htm. [Accessed: 2016-03-18].

[30] G. Campbell. Software-intensive systems producibility: A vision and roadmap (v. 0.1).
Technical Report CMU/SEI-2007-TN-017, Software Engineering Institute, Carnegie
Mellon University, Pittsburgh, PA, December 2007. URL http://resources.sei.
cmu.edu/library/asset-view.cfm?AssetID=8243.

[31] C. Collberg and T. A. Proebsting. Repeatability in computer systems research.	 Com­
mun. ACM, 59(3):62–69, Feb. 2016. ISSN 0001-0782. doi:10.1145/2812803.

[32] Computational Infrastructure for Geodynamics (CIG).	 Software development Best
Practices. https://geodynamics.org/cig/dev/best-practices/. [Accessed: 2016­
03-18].

[33] Council	 on Competitiveness. Case study: Boeing catches a lift with high perfor­
mance computing, 2009. [Report] http://hpc4energy.org/wp-content/uploads/
HPC_Boeing_072809_A-1.pdf [Accessed 2016-04-09].

[34] Council on Competitiveness. Perceive. Finding the future through an exascale economy.
Technical report, 2016. [Report] http://www.compete.org [Accessed 2016-07-01].

[35] K. Crowston, K. Wei, J. Howison, and A. Wiggins.	 Free/libre open-source software
development: What we know and what we do not know. ACM Comput. Surv., 44(2):
7:1–7:35, Mar. 2008. ISSN 0360-0300. doi:10.1145/2089125.2089127.

[36] L. Dabbish, C. Stuart, J. Tsay, and J. Herbsleb. Social coding in GitHub: Transparency
and collaboration in an open software repository. In Proceedings of the ACM 2012 Con­
ference on Computer Supported Cooperative Work, CSCW ’12, pages 1277–1286, New
York, NY, USA, 2012. ACM. ISBN 978-1-4503-1086-4. doi:10.1145/2145204.2145396.

Productivity and Sustainability Challenges for CSE Software 58

http://dx.doi.org/10.1287/orsc.14.3.312.15162
http://dx.doi.org/10.1287/orsc.12.2.198.10116
http://dx.doi.org/10.5465/amj.2010.0756
http://www.bls.gov/oes/current/oes151132.htm
http://www.bls.gov/oes/current/oes151132.htm
http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=8243
http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=8243
http://dx.doi.org/10.1145/2812803
https://geodynamics.org/cig/dev/best-practices/
http://hpc4energy.org/wp-content/uploads/HPC_Boeing_072809_A-1.pdf
http://hpc4energy.org/wp-content/uploads/HPC_Boeing_072809_A-1.pdf
http://www.compete.org
http://dx.doi.org/10.1145/2089125.2089127
http://dx.doi.org/10.1145/2145204.2145396

[37] C.	 W. H. Davis. Case study: Moving to the pull request workflow & integrating
quality engineers on the team for better software quality. DZone/Agile Zone, March 28
2015. https://dzone.com/articles/case-study-moving-pull-request [Accessed:
2016-04-12].

[38] C.	 Desclaux. Capturing design and maintenance decisions with macs. Journal of
Software: Evolution and Process, 4(4), October 2006.

[39] DOE report.	 Software productivity for extreme-scale science, January 2014. URL
http://www.orau.gov/swproductivity2014/reference.htm.

[40] J. Dongarra, L. Petzold, and V. Voevodin.	 Summary of CSE Survey. https://
www.siam.org/students/resources/pdf/Summary-of-CSE-Survey.pdf. [Accessed:
2016-02-13].

[41] D.	 Dougherty. Interpretive barriers to successful product innovation in large firms.
Organization Science, 3(2):179–202, 1992. doi:10.1287/orsc.3.2.179.

[42] A. Dubey, M. Turk, and B. O’Shea. The impact of community software in astrophysics.
In Proceedings of WCCM-ECCM-ECFD 2014, 2014. Available at http://www.
wccm-eccm-ecfd2014.org/admin/files/filePaper/p1174.pdf. [Accessed: 2016­
04-05].

[43] C. Duhigg. What google learned from its quest to build the perfect team. New York
Times, February 28 2016. URL http://nyti.ms/20Vn3sz. [Accessed: 2016-04-10].

[44] S. M. Easterbrook and T. C. Johns. Engineering the software for understanding climate
change. Computing in Science & Engineering, 11(6):65–74, Nov 2009. ISSN 1521-9615.
doi:10.1109/MCSE.2009.193.

[45] A. Edmondson. Psychological safety and learning behavior in work teams.	 Adminis­
trative Science Quarterly, 44(2):350–383, 1999. doi:10.2307/2666999.

[46] P. N. Edwards, M. S. Mayernik, A. L. Batcheller, G. C. Bowker, and C. L. Borgman.
Science friction: Data, metadata, and collaboration. Social Studies of Science, 41(5):
667–690, 2011. doi:10.1177/0306312711413314.

[47] M. Egerstedt. The Mechanics of a CPS(-ish) MOOC: The Good, The Bad, The Ugly. In
2014 NSF Cyber-Physical Systems Principal Investigators Meeting (CPS), November
11 2014. [Presentation] http://cps-vo.org/node/15865 [Accessed: 2016-03-18].

[48] T. Ellman and T. Murato.	 Deductive synthesis of numerical simulation programs
from networks of algebraic and ordinary differential equations. In Automated Software
Engineering. Kluwer Academic Publishers, 1998.

[49] S. Faulk, E. Loh, M. L. V. de Vanter, S. Squires, and L. Votta.	 Scientific computing’s
productivity gridlock: How software engineering can help. Computing in Science & En­
gineering, 11(6):30–39, November 2009. ISSN 1521-9615. doi:10.1109/MCSE.2009.205.

Productivity and Sustainability Challenges for CSE Software 59

https://dzone.com/articles/case-study-moving-pull-request
http://www.orau.gov/swproductivity2014/reference.htm
https://www.siam.org/students/resources/pdf/Summary-of-CSE-Survey.pdf
https://www.siam.org/students/resources/pdf/Summary-of-CSE-Survey.pdf
http://dx.doi.org/10.1287/orsc.3.2.179
http://www.wccm-eccm-ecfd2014.org/admin/files/filePaper/p1174.pdf
http://www.wccm-eccm-ecfd2014.org/admin/files/filePaper/p1174.pdf
http://nyti.ms/20Vn3sz
http://dx.doi.org/10.1109/MCSE.2009.193
http://dx.doi.org/10.2307/2666999
http://dx.doi.org/10.1177/0306312711413314
http://cps-vo.org/node/15865
http://dx.doi.org/10.1109/MCSE.2009.205

[50] Flash Center for Computational Science. Building community codes for effective sci­
entific research on HPC platforms, 2012. [Workshop] http://flash.uchicago.edu/
cc2012/ [Accessed 2016-04-09].

[51] M. Fowler. Improvement ravine, October 18 2006. [Blog] http://martinfowler.com/
bliki/ImprovementRavine.html [Accessed: 2016-04-11].

[52] B. Fryxell, K. Olson, P. Ricker, F. X. Timmes, M. Zingale, D. Q. Lamb, P. MacNe­
ice, R. Rosner, J. W. Truran, and H. Tufo. FLASH: Adaptive mesh hydrodynam­
ics code for modeling astrophysical thermonuclear flashes. Astrophysics Source Code
Library, Oct. 2010. URL http://adsabs.harvard.edu/abs/2010ascl.soft10082F.
[Accessed: 2016-04-11].

[53] Geant4. Geant4 web page. http://www.geant4.org. [Accessed: 2016-03-18].

[54] GitHub.	 Github guides: Making your code citable. https://guides.github.com/
activities/citable-code/. [Accessed: 2016-03-18].

[55] R. Glass. Frequently Forgotten Fundamental Facts about Software Engineering. IEEE
Software, May/June:110, 2001.

[56] T.	 Goodale, G. Allen, G. Lanfermann, J. Massó, T. Radke, E. Seidel, and J. Shalf.
The Cactus framework and toolkit: Design and applications. In Vector and Parallel
Processing – VECPAR’2002, 5th International Conference, Lecture Notes in Computer
Science, Berlin, 2003. Springer. URL http://edoc.mpg.de/3341.

[57] J. E. Hannay, C. MacLeod, and J. Singer. How do scientists develop and use scientific
software? In ICSE Workshop on Software Engineering for Computational Science and
Engineering, pages 1–8. Vancouver, Canada: IEEE, 2009.

[58] HDF. The HDF Group. https://www.hdfgroup.org/. [Accessed: 2016-03-18].

[59] M. Heroux, R. Bartlett, and J. Willenbring.	 Software Engineering Principles: The
TriBITS Lifecycle Model. SANDIA National Laboratories. February 2012. [Presen­
tation] http://www.sandia.gov/~maherou/docs/HerouxTribitsOverview.pdf [Ac­
cessed: 2016-03-18].

[60] M.	 A. Heroux. Editorial: ACM TOMS replicated computational results initia­
tive. ACM Trans. Math. Softw., 41(3):13:1–13:5, June 2015. ISSN 0098-3500.
doi:10.1145/2743015.

[61] S.	 Hettrick. Why we need to create careers for research software engineers. In Sci­
entific Computing World, November 11 2015. http://www.scientific-computing.
com/news/news_story.php?news_id=2737 [Accessed: 2016-03-18].

[62] S.	 Hettrick. Research software sustainabilty. Report on a Knowledge Exchange
Workshop, 2016. http://repository.jisc.ac.uk/6332/1/Research_Software_
Sustainability_Report_on_KE_Workshop_Feb_2016_FINAL.pdf.

Productivity and Sustainability Challenges for CSE Software 60

http://flash.uchicago.edu/cc2012/
http://flash.uchicago.edu/cc2012/
http://martinfowler.com/bliki/ImprovementRavine.html
http://martinfowler.com/bliki/ImprovementRavine.html
http://adsabs.harvard.edu/abs/2010ascl.soft10082F
http://www.geant4.org
https://guides.github.com/activities/citable-code/
https://guides.github.com/activities/citable-code/
http://edoc.mpg.de/3341
https://www.hdfgroup.org/
http://www.sandia.gov/~maherou/docs/HerouxTribitsOverview.pdf
http://dx.doi.org/10.1145/2743015
http://www.scientific-computing.com/news/news_story.php?news_id=2737
http://www.scientific-computing.com/news/news_story.php?news_id=2737
http://repository.jisc.ac.uk/6332/1/Research_Software_Sustainability_Report_on_KE_Workshop_Feb_2016_FINAL.pdf
http://repository.jisc.ac.uk/6332/1/Research_Software_Sustainability_Report_on_KE_Workshop_Feb_2016_FINAL.pdf

[63] J. P. Holdren.	 Increasing access to the results of federally funded scientific research,
February 22 2013. Memorandum for the heads of executive departments and agencies,
Office of Science and Technology Policy.

[64] E. Houstis, J. Rice, E. Gallopoullos, and R. Bramley.	 Enabling Technologies for Com­
putational Science: Frameworks, Middleware, and Environments. Springer, 2012.

[65] J. Howison and K. Crowston. Collaboration through open superposition: A theory of
the open source way. MIS Quarterly, 38(1):29–50, 2014.

[66] J. Howison and J. Herbsleb. Scientific software production: Incentives and collabora­
tion. In Proceedings of the ACM 2011 conference on Computer Supported Cooperative
Work, pages 513–522. Hangzhou, China: ACM, 2011.

[67] HPC4Energy.	 Success stories: Boeing. http://hpc4energy.org/hpc-road-map/
success-stories/boeing/, 2009. Last access: 2016-04-05.

[68] W. Humphrey.	 Characterizing the software process: a maturity framework. IEEE
Software, 5(2):73–79, March 1988. ISSN 0740-7459. doi:10.1109/52.2014.

[69] Impactstory.	 Let’s value the software that powers science: Introducing Depsy. [Blog]
http://blog.impactstory.org/introducing-depsy/ [Accessed: 2016-03-18].

[70] iRODS	 Consortium. About the iRODS Consortium. http://irods.org/
consortium/. [Accessed: 2016-03-18].

[71] E. Kant. Synthesis of mathematical-modeling software. IEEE Software, 10, May 1993.

[72] D. S. Katz. Transitive credit as a means to address social and technological concerns
stemming from citation and attribution of digital products. Journal of Open Research
Software, 2(1):e20, 2014. doi:10.5334/jors.be.

[73] D. S. Katz. Sustainable software needs a change in the culture of science. In Scientific
Computing World, January 15 2016. http://www.scientific-computing.com/news/
news_story.php?news_id=2759 [Accessed: 2016-03-18].

[74] D.	 S. Katz, S.-C. T. Choi, H. Lapp, K. Maheshwari, F. Löffler, M. Turk, M. Han­
well, N. Wilkins-Diehr, J. Hetherington, J. Howison, S. Swenson, G. Allen, A. Elster,
B. Berriman, and C. Venters. Summary of the first workshop on sustainable software
for science: Practice and experiences (WSSSPE1). Journal of Open Research Software,
2(1):e6, 2014. ISSN 2049-9647. doi:10.5334/jors.an.

[75] Kerberos Consortium. MIT Kerberos Consortium.	 http://www.kerberos.org/. [Ac­
cessed: 2016-03-18].

[76] D.	 Keyes and V. Taylor (Task Force Co-Chairs). National Science Foundation
Advisory Committee on CyberInfrastructure, Task Force on Software for Science
and Engineering, Final Report, 2011. http://www.nsf.gov/cise/aci/taskforces/
TaskForceReport_Software.pdf.

Productivity and Sustainability Challenges for CSE Software 61

http://hpc4energy.org/hpc-road-map/success-stories/boeing/
http://hpc4energy.org/hpc-road-map/success-stories/boeing/
http://blog.impactstory.org/introducing-depsy/
http://irods.org/consortium/
http://irods.org/consortium/
http://dx.doi.org/10.5334/jors.be
http://www.scientific-computing.com/news/news_story.php?news_id=2759
http://www.scientific-computing.com/news/news_story.php?news_id=2759
http://dx.doi.org/10.5334/jors.an
http://www.kerberos.org/
http://www.nsf.gov/cise/aci/taskforces/TaskForceReport_Software.pdf
http://www.nsf.gov/cise/aci/taskforces/TaskForceReport_Software.pdf

[77] Kitware. Kitware and UNC Receive NIH Award to Predict Stroke Outcomes Using 3D
Models of Brain Blood Vessels. https://blog.kitware.com/kitware-and-unc-receive-nih­
award-to-predict-stroke-outcomes-using-3d-models-of-brain-blood-vessels/. [Accessed:
2016-03-18].

[78] P.	 Klint, T. van der Storm, and J. Vinju. Rascal: A domain specific language for
source code analysis and manipulation. In Proceedings 2009 Conference of Source
Code Analysis and Manipulation. IEEE, 2009.

[79] H. Kniberg and M. Skarin.	 Kanban and Scrum - Making the Most of Both. InfoQ,
2009.

[80] R. E. Kraut and P. Resnick. Building Successful Online Communities: Evidence-Based
Social Design. MIT Press, 2011.

[81] Krell	 Institute. Computational science graduate fellowships. https://www.
krellinst.org/csgf/. [Accessed: 2016-02-13].

[82] S. Krishnamurthi. Artifact evaluation for software conferences. SIGSOFT Softw. Eng.
Notes, 38(3):7–10, May 2013. ISSN 0163-5948. doi:10.1145/2464526.2464530. URL
http://doi.acm.org/10.1145/2464526.2464530.

[83] E. Lagercrantz. Stencil computation auto-tuning via dataflow graph transformations.
Master’s thesis, Uppsala University, Department of Information Technology, 2015.

[84] F. Loeffler, J. Faber, E. Bentivegna, T. Bode, P.	 Diener, R. Haas, I. Hinder, B. C.
Mundim, C. D. Ott, E. Schnetter, G. Allen, M. Campanelli, and P. Laguna. The
einstein toolkit: a community computational infrastructure for relativistic astrophysics.
Classical and Quantum Gravity, 29(11):115001, 2012. URL http://stacks.iop.org/
0264-9381/29/i=11/a=115001.

[85] M. Lowry, A. Philpot, T. Pressburger, and I. Underwood. Amphion: Automatic pro­
gramming for scientific subroutine libraries. In Proceedings 8th International Sympo­
sium on Methodologies for Intelligent Systems, LNCS 869. Springer Verlag, 1994.

[86] D.	 F. Maron. 12 surprising facts about Nobel prizes. Scientific Amer­
ican, October 5 2015. http://www.scientificamerican.com/article/
12-surprising-facts-about-nobel-prizes/ [Accessed: 2016-04-10].

[87] M. Matsumoto,	 F. Mori, S. Ohshima, H. Jitsumoto, T. Katagiri, and K. Naka­
jima. Implementation and evaluation of an AMR framework for FDM appli­
cations. Procedia Computer Science, 29:936 – 946, 2014. ISSN 1877-0509.
doi:10.1016/j.procs.2014.05.084. 2014 International Conference on Computational Sci­
ence.

[88] A. McPherson, B. Proffitt, and R. Hale-Evans.	 Estimating the Total Development
Cost of a Linux Distribution. Technical report, The Linux Foundation, October
2008. URL http://www.linuxfoundation.org/sites/main/files/publications/
estimatinglinux.html.

Productivity and Sustainability Challenges for CSE Software 62

https://blog.kitware.com/kitware-and-unc-receive-nih-award-to-predict-stroke-outcomes-using-3d-models-of-brain-blood-vessels/
https://blog.kitware.com/kitware-and-unc-receive-nih-award-to-predict-stroke-outcomes-using-3d-models-of-brain-blood-vessels/
https://www.krellinst.org/csgf/
https://www.krellinst.org/csgf/
http://dx.doi.org/10.1145/2464526.2464530
http://doi.acm.org/10.1145/2464526.2464530
http://stacks.iop.org/0264-9381/29/i=11/a=115001
http://stacks.iop.org/0264-9381/29/i=11/a=115001
http://www.scientificamerican.com/article/12-surprising-facts-about-nobel-prizes/
http://www.scientificamerican.com/article/12-surprising-facts-about-nobel-prizes/
http://dx.doi.org/10.1016/j.procs.2014.05.084
http://www.linuxfoundation.org/sites/main/files/publications/estimatinglinux.html
http://www.linuxfoundation.org/sites/main/files/publications/estimatinglinux.html

[89] G. Miller. A scientist’s nightmare: Software problem leads to five retractions. Science,
314(5807):1856–1857, 2006. ISSN 0036-8075. doi:10.1126/science.314.5807.1856.

[90] NAMD.	 NAMD - Scalable Molecular Dynamics. http://www.ks.uiuc.edu/
Research/namd/. [Accessed: 2016-03-18].

[91] National Science Foundation.	 Implementation of NSF CIF21 Software Vision (SW-
Vision). http://www.nsf.gov/si2. [Accessed: 2016-03-18].

[92] J. Neighbors. The Draco approach to constructing software from reusable components.
Transactions on Software Engineering, 10(5), 1984.

[93] T.	 Oden et al. Final Report of the Advisory Committee for Cyberinfras­
tructure Task Force on Grand Challenges. Technical report, National Science
Foundation, 2011. http://www.nsf.gov/cise/aci/taskforces/TaskForceReport_
GrandChallenges.pdf.

[94] OpenFOAM. OpenFOAM - The open source CFD toolbox. http://www.openfoam.
com/.

[95] B. W. O’Shea, G. Bryan, J. Bordner, M. L. Norman, T. Abel, R. Harkness, and A. Krit­
suk. Enzo: AMR cosmology application. Astrophysics Source Code Library, Oct. 2010.
URL http://adsabs.harvard.edu/abs/2010ascl.soft10072O. [Accessed: 2016-04­
11].

[96] R. E. Park, W. B. Goethert, and W. A. Florac. Goal-driven software measurement—
a guidebook. Technical Report CMU/CEI-96-HB-002, Software Engineering Institute
Handbook, 1996. URL http://resources.sei.cmu.edu/library/asset-view.cfm?
assetID=12453.

[97] Pegasus.	 Pegasus powers LIGO gravitational wave de­
tection analysis. https://pegasus.isi.edu/2016/02/11/
pegasus-powers-ligo-gravitational-waves-detection-analysis/. [Accessed:
2016-03-18].

[98] L. Petzold et al. Graduate education in computational science and engineering. SIAM
Review, 43(1):163–177, 2001.

[99] D. Post and L. Votta.	 Computational science demands and new paradigm. Physics
Today, 58(1):35–41, 2005.

[100] Pro ject CRediT.	 Contributor Roles Taxonomy. http://casrai.org/CRediT/. [Ac­
cessed: 2016-03-18].

[101] D. Quinlan. Rose tutorial - rose compiler infrastructure, 2015.

[102] R Project. The R Pro ject for Statistical Computing.	 https://www.r-project.org/.
[Accessed: 2016-03-18].

Productivity and Sustainability Challenges for CSE Software 63

http://dx.doi.org/10.1126/science.314.5807.1856
http://www.ks.uiuc.edu/Research/namd/
http://www.ks.uiuc.edu/Research/namd/
http://www.nsf.gov/si2
http://www.nsf.gov/cise/aci/taskforces/TaskForceReport_GrandChallenges.pdf
http://www.nsf.gov/cise/aci/taskforces/TaskForceReport_GrandChallenges.pdf
http://www.openfoam.com/
http://www.openfoam.com/
http://adsabs.harvard.edu/abs/2010ascl.soft10072O
http://resources.sei.cmu.edu/library/asset-view.cfm?assetID=12453
http://resources.sei.cmu.edu/library/asset-view.cfm?assetID=12453
https://pegasus.isi.edu/2016/02/11/pegasus-powers-ligo-gravitational-waves-detection-analysis/
https://pegasus.isi.edu/2016/02/11/pegasus-powers-ligo-gravitational-waves-detection-analysis/
http://casrai.org/CRediT/
https://www.r-project.org/

[103] R.	 Ramnath and D. S. Katz. Software Infrastructure for Sustained Innova­
tion (SI2). In 2016 NSF SI2 PI Workshop, February 16 2016. [Presentation,
Slide 25] http://cococubed.asu.edu/si2_pi_workshop_2016/ewExternalFiles/
2016-PI-Meeting-PD-Presentation-2016-02-15-20-49-Compressed.pdf [Ac­
cessed: 2016-03-18].

[104] C. Rich and R. Waters.	 The programmer’s apprentice project: A research overview.
Technical Report Memo 1004, MIT AI Lab, 1987.

[105] Rolls	 Royce. Design systems and tools. http://www.rolls-royce.com/about/
our-technology/enabling-technologies/design-systems-tools.aspx, 2016.
[Accessed: 2016-04-09].

[106] H. D. Rombach and B. T. Ulery.	 Improving software maintenance through mea­
surement. Proceedings of the IEEE, 77(4):581–595, Apr 1989. ISSN 0018-9219.
doi:10.1109/5.24144.

[107] R. Ross, P.	 Beckman, R. Latham, K. Iskra, et al. HEDP software introductions:
ESC, operating systems, and i/o. http://flash.uchicago.edu/~dubey/Feb28_
2011/ross_io_os.pdf, February 2011. Last access: April 16, 2016.

[108] U. Rüde, K. Willcox, L. C. McInnes, H. D. Sterck, et al. Future Directions in CSE
Education and Research, 2016. Report from a Workshop Sponsored by SIAM and
EESI-2, available via http://wiki.siam.org/siag-cse/index.php/Main_Page.

[109] J. Segal.	 When software engineers met research scientists: A case study. Empirical
Software Engineering, 10(4):517–536, 2005. ISSN 1573-7616. doi:10.1007/s10664-005­
3865-y.

[110] J. Segal. Some challenges facing software engineers developing software for scientists.
In Software Engineering for Computational Science and Engineering, 2009. SECSE
’09. ICSE Workshop on, pages 9–14, May 2009. doi:10.1109/SECSE.2009.5069156.

[111] B. F. Smith and R. A. Bartlett.	 xSDK package compliance standards, March 2016.
[draft document] https://ideas-productivity.org/resources/xsdk-docs/.

[112] Software Carpentry.	 Software carpentry. http://software-carpentry.org/, 1998.
[Accessed: 2016-04-09].

[113] Software	 Engineering for Science. Call for Book Chapter Proposals. http://
se4science.org/. [Accessed: 2016-03-18].

[114] V. Springel. GADGET-2: A code for cosmological simulations of structure formation.
Astrophysics Source Code Library, Mar. 2000. URL http://adsabs.harvard.edu/
abs/2000ascl.soft03001S. [Accessed: 2016-04-11].

[115] M. Stewart. An experiment in scientific program understanding. In Automated Software
Engineering. Kluwer Academic Publishers, 2000.

Productivity and Sustainability Challenges for CSE Software 64

http://cococubed.asu.edu/si2_pi_workshop_2016/ewExternalFiles/2016-PI-Meeting-PD-Presentation-2016-02-15-20-49-Compressed.pdf
http://cococubed.asu.edu/si2_pi_workshop_2016/ewExternalFiles/2016-PI-Meeting-PD-Presentation-2016-02-15-20-49-Compressed.pdf
http://www.rolls-royce.com/about/our-technology/enabling-technologies/design-systems-tools.aspx
http://www.rolls-royce.com/about/our-technology/enabling-technologies/design-systems-tools.aspx
http://dx.doi.org/10.1109/5.24144
http://flash.uchicago.edu/~dubey/Feb28_2011/ross_io_os.pdf
http://flash.uchicago.edu/~dubey/Feb28_2011/ross_io_os.pdf
http://wiki.siam.org/siag-cse/index.php/Main_Page
http://dx.doi.org/10.1007/s10664-005-3865-y
http://dx.doi.org/10.1007/s10664-005-3865-y
http://dx.doi.org/10.1109/SECSE.2009.5069156
https://ideas-productivity.org/resources/xsdk-docs/
http://software-carpentry.org/
http://se4science.org/
http://se4science.org/
http://adsabs.harvard.edu/abs/2000ascl.soft03001S
http://adsabs.harvard.edu/abs/2000ascl.soft03001S

[116] M. Stewart. Report on automated semantic analysis of scientific and engineering codes.
Technical Report CR-2001-211078, NASA, 2001.

[117] J. M. Stone and M. L. Norman. ZEUS-2D: A radiation magnetohydrodynamics code for
astrophysical flows in two space dimensions. i - the hydrodynamic algorithms and tests.
Astrophysical Journal Supplement Series, 80:753–790, June 1992. doi:10.1086/191680.
URL http://adsabs.harvard.edu/abs/1992ApJS...80..753S. [Accessed: 2016-04­
11].

[118] J. M. Stone and M. L. Norman. ZEUS-2D: Simulation of fluid dynamical flows.	 As­
trophysics Source Code Library, June 2013. URL http://adsabs.harvard.edu/abs/
2013ascl.soft06014S. [Accessed: 2016-04-11].

[119] J. M. Stone, T. A. Gardiner, P.	 Teuben, J. F. Hawley, and J. B. Simon. Athena:
Grid-based code for astrophysical magnetohydrodynamics (MHD). Astrophysics
Source Code Library, Oct. 2010. URL http://adsabs.harvard.edu/abs/2010ascl.
soft10014S. [Accessed: 2016-04-11].

[120] Taulbee Survey. The Taulbee Survey. http://cra.org/crn/2015/05/2014_taulbee_
survey. [Accessed: 2016-02-13].

[121] The yt pro ject.	 yt: A multi-code analysis toolkit for astrophysical simulation data.
Astrophysics Source Code Library, Nov. 2010. URL http://adsabs.harvard.edu/
abs/2010ascl.soft11022T. [Accessed: 2016-04-11].

[122] P.	 Tzeferacos. FLASH code, development and applications: an
open source tool for HEDP. https://www.alcf.anl.gov/events/
flash-code-development-and-applications-open-source-tool-hedp, December
19 2013. [Accessed: 2016-04-11].

[123] P. Tzeferacos, M. Fatenejad, N. Flocke, C. Graziani, G. Gregori, D. Lamb, D. Lee,
J. Meinecke, A. Scopatz, and K. Weide. FLASH MHD simulations of experiments
that study shock-generated magnetic fields. High Energy Density Physics, 17, Part
A:24–31, 2015. ISSN 1574-1818. doi:10.1016/j.hedp.2014.11.003. Special Issue: 10th
International Conference on High Energy Density Laboratory Astrophysics.

[124] R. van de Geijn.	 Linear algebra foundations to frontiers. http://www.ulaff.net/
index.html.

[125] R. Van Noorden. Science publishing: The trouble with retractions. Nature, 478:26–28,
2011.

[126] VTK. The Visualization Toolkit. http://www.vtk.org/. [Accessed: 2016-03-18].

[127] G. Wilson.	 Software carpentry: lessons learned. arXiv:1307.5448. URL http://
arxiv.org/abs/1307.5448. [Accessed: 2016-04-16].

Productivity and Sustainability Challenges for CSE Software 65

http://dx.doi.org/10.1086/191680
http://adsabs.harvard.edu/abs/1992ApJS...80..753S
http://adsabs.harvard.edu/abs/2013ascl.soft06014S
http://adsabs.harvard.edu/abs/2013ascl.soft06014S
http://adsabs.harvard.edu/abs/2010ascl.soft10014S
http://adsabs.harvard.edu/abs/2010ascl.soft10014S
http://cra.org/crn/2015/05/2014_taulbee_survey
http://cra.org/crn/2015/05/2014_taulbee_survey
http://adsabs.harvard.edu/abs/2010ascl.soft11022T
http://adsabs.harvard.edu/abs/2010ascl.soft11022T
https://www.alcf.anl.gov/events/flash-code-development-and-applications-open-source-tool-hedp
https://www.alcf.anl.gov/events/flash-code-development-and-applications-open-source-tool-hedp
http://dx.doi.org/10.1016/j.hedp.2014.11.003
http://www.ulaff.net/index.html
http://www.ulaff.net/index.html
http://www.vtk.org/
http://arxiv.org/abs/1307.5448
http://arxiv.org/abs/1307.5448

[128] G. Wilson, D. A. Aruliah, C. T. Brown, N. P. C. Hong, M. Davis, R. T. Guy, S. H. Had­
dock, K. D. Huff, I. M. Mitchell, M. D. Plumbley, B. Waugh, E. P. White, , and P. Wil­
son. Best practices for scientific computing. 2014. doi:10.1371/journal.pbio.1001745.

[129] Zenodo. Research shared. http://zenodo.org/. [Accessed: 2016-03-18].

Productivity and Sustainability Challenges for CSE Software 66

http://dx.doi.org/10.1371/journal.pbio.1001745
http://zenodo.org/

Submitted White Papers

Electronic version of these papers are available for download from the CSESSP Challenges
Workshop website: https://www.orau.gov/csessp2015/whitepapers.htm.

Productivity and Sustainability Challenges for CSE Software 67

https://www.orau.gov/csessp2015/whitepapers.htm

Workshop Participants and Report Contributors

Name Organization
Gabrielle Allen University of Illinois Urbana-Champaign
Richard Arthur General Electric
Roscoe Bartlett Oak Ridge National Laboratory, Sandia National Labo-

ratories
Ira Baxter Semantic Designs
David E. Bernholdt Oak Ridge National Laboratory
Ronald Boisvert National Institute of Standards andTechnology
Grady Campbell domain-specific.com
Lali Chatterjee DOE Office of Science, High Energy
Thomas Clune NASA Global Modeling and Assimilation Office
Ethan Coon Los Alamos National Laboratory
Kosta Damevski Virginia Commonwealth University
Jack Dongarra University of Tennessee, Knoxville
Anshu Dubey Argonne National Laboratory
Karamarie Fecho Copperline Professional Solutions
Rob Fowler RENCI, University of North Carolina at Chapel Hill
Joerg Gablonski The Boeing Company
Mike Glass Sandia National Laboratories
Sol Greenspan National Science Foundation
Timo Heister Clemson University
Michael Heroux Sandia National Laboratories
Costin Iancu Lawrence Berkeley National Laboratory
Daniel Ibanez Renselaer Polytechnical Institute
Ray Idaszak RENCI, University of North Carolina at Chapel Hill
Paul Jones FDA
Christos Kartsaklis Oak Ridge National Laboratory
Daniel S. Katz National Science Foundation
Walid Keyrouz National Institute of Standards andTechnology
Quincey Koziol The HDF Group
Sandy Landsberg DoD HPC Modernization Program (HPCMP)
Tom Lange Procter & Gamble-Retired
Steven Lee DOE ASCR
David Lesmes Department of Energy/BER
Frank Löffler Louisiana State University
Ernie Lucier NITRD
Vijay Mahadevan Argonne National Laboratory
John McGregor Clemson University
Lois Curfman McInnes Argonne National Laboratory
Robert Nagler RadiaSoft LLC

68 Productivity and Sustainability Challenges for CSE Software

Name Organization
Thomas Ndousse-Fetter U.S. Department of Energy
Tien Nguyen Iowa State University
Sudhakar Pamidighan- Indiana University
tam
Abani Patra University at Buffalo
Aleksandra Pawlik Software Sustainability Institute, New Zealand eScience

Infrastructure (NeSI)
Douglass Post Software Engineering Institute, DoD High Performance

Modernization Program (HPCMP)
Hridesh Rajan Iowa State University
Albert Reuther MIT Lincoln Laboratory
Rob Roser Fermi National Accelerator Laboratory
Karl Rupp Freelance Computational Scientist
Walter Scarborough Texas Advanced Computing Center, University of Texas
Will Schroeder Kitware, Inc.
Todd Simons Rolls-Royce
Faulk Stuart University of Oregon
David Tarboton Utah State University
Karen Tomko Ohio Supercomputer Center
Colin Venters University of Huddersfield
Jeffrey Vetter Oak Ridge National Laboratory, Georgia Tech Univer-

sity
Hai Zhu DuPont

Productivity and Sustainability Challenges for CSE Software 69

Productivity and Sustainability Challenges for CSE Software 70

Productivity and Sustainability Challenges for CSE Software 71

	Table of Contents
	How to cite
	Preface
	Executive Summary
	Acknowledgments
	Contributors
	Introduction
	Dematerialization through digitization
	Challenges, trends, and opportunities
	Characterizing productivity and sustainability
	Software productivity
	Software sustainability
	The shared productivity-sustainability concern for product quality

	Improved cse Software Sustainability and Developer Productivity: Opportunities and Incentives
	Opportunities
	The CREATE Project: Emphasizing sustainability and productivity
	Providing incentives: Funding agencies, publishers and employers

	Role of Software Engineering Research
	Expanding software engineering practice
	New software engineering research
	Transition of research to practice in cse software community
	Collaboration opportunities
	Specific needs of small user teams
	Software engineering research roadmap
	Productive and sustainable: Astrophysics community codes

	Measuring Software Productivity and Sustainability
	Opportunities for investigation
	Understanding the use of and experience with metrics in the swe community
	Exposing the current use and experience with metrics in the cse community
	CSE as a distinct software domain
	Encouraging and increasing introspection into cse software development
	Measuring productivity and sustainability roadmap

	New Approaches for Faster, More Affordable CSE Software
	Suggested research directions
	Productivity through continued knowledge development, capture, and dissemination
	Productivity through design capture, display, and revision
	Productivity through design recovery and modernization

	New approaches roadmap

	Economics of cse Software Tools
	Descriptive examples
	Addressing the current cultural economics of cse tool development
	Establishing new academia-industry-government partnership models
	Economics of commercial software
	Shared public-private journey
	Identifying new incentives for retaining top software talent

	An urgent need for productive and sustainable tools
	Software tools roadmap

	Social Sciences Applied to cse Software Systems
	cse software is an ecosystem
	cse software development is a set of social communities
	Team dynamics and culture
	Individual and intra-team social skills
	Individual response to community culture
	Inter-team communities and practices
	The role of tools

	Social sciences roadmap
	Possible outcomes

	Workforce Needs for Sustainable Software for Sciences
	Scale and scope of problem
	Gaps in current training processes
	Innovative and emerging solutions
	Role of universities, industry and funding agencies roadmap

	cse Software in Industry & Manufacturing
	Opportunities for cse software to advance industry & manufacturing
	Financial impact
	Engines of productivity
	Instruments for insight
	Software ecosystem synergy
	Software scalability competitiveness
	A new paradigm for regulation
	Grand challenge: Scalable multiscale
	Stimulate workforce development

	Development and use challenges of cse ms software by industry
	Software licensing terms

	CSE impact: Consumer products

	Summary and Conclusions
	References
	Appendices
	White Papers
	Workshop Participants
	Workshop Agenda

